Recent progresses of the radon detector with an electrostatic collection

2022 June 15th (Wed)

Low Radioactivity Techniques (LRT) workshop (South Dakota Mines/online)

Yuuki Nakano (Kamioka observatory) ynakano@km.icrr.u-tokyo.ac.jp

Young research 21K13942

Contents PTEP Prog. Theor. Exp. Phys. 2015, 033H01 (7 pages DOI: 10.1093/ptep/ptv018 Development of a high-sensitivity 80 L radon detector for purified gases **Introduction and Motivation** K. Hosokawa¹, A. Murata¹, Y. Nakano², Y. Onishi¹, H. Sekiya^{2,3}, Y. Takeuchi^{1,3,*}, and S. Tasaka⁴ Contents lists available at ScienceDirect NUCLEAR INSTRUMENTS A METHODS IN PRESEARCH Nuclear Inst. and Methods in Physics Research, A journal homepage: www.elsevier.com/loc - Design and electrostatic collection method Measurement of radon concentration in super-Kamiokande's buffer gas Y. Nakano^{a,*}, H. Sekiya^{b,c}, S. Tasaka^b, Y. Takeuchi^{a,c}, R.A. Wendell^{d,c}, M. Matsubara^e, M. Nakahata b, - Calibration setup arxiv > physics > arXiv:2112.06614 Physics > Instrumentation and Detectors Submitted on 13 Dec 2021 Improvement of radon detector performance by using a large-sized PIN-photodiode K. Okamoto, Y. Nakano, G. Pronost, H. Sekiya, S. Tasaka, Y. Takeuchi, M. Nakahata PTEP Prog. Theor. Exp. Phys. 2020, 113H01 (15 pages - Performance with purified air, Ar, Xe, and CF4 (under preparation) DOI: 10.1093/ptep/ptaa119 Evaluation of radon adsorption efficiency values - Rn removal with activated carbon fiber in xenon with activated carbon fibers Y. Nakano¹, K. Ichimura^{2,3}, H. Ito⁴, T. Okada⁴, H. Sekiya^{4,3}, Y. Takeuchi^{1,3,*}, S. Tasaka⁴, and M. Yamashita^{3,4,5} PTEP Prog. Theor. Exp. Phys. 2022 023H01(15 pages) DOI: 10.1093/ptep/ptac005 Evaluation of the radon adsorption efficiency of activated carbon fiber using tetrafluoromethane

Radon detector

Results

Summary

Y. Kotsar¹, Y. Nakano², Y. Takeuchi^{1,3,*}, and K. Miuchi¹

p. 3 Backgrounds in experiments searching for rare event

- **Gases used for underground experiments**
- Various gases are used as target for the rare interaction,

source of the rare decay, and carrier gas of detectors.

- Radioactive decays limits detector's sensitivity below multi-MeV region.

Typical gas	Experiments	Physics target	Special BG
Не	He-TPC, MIMAC-He3	Dark matter	² H
Ne	CLEAN	Dark matter	
Ar	DarkSide, DEAP, ANKOK	Dark matter	³⁹ Ar
	ICARUS, DUNE	Neutrino interaction	
Хе	Xenon, LUX, XMASS, PANDA, LZ	Dark matter (0νECEC, 0ν4β, coherent scattering)	⁸⁵ Kr
	KamLAND, EXO, NEXT, AXEL	Ον2β	
CF4	NEWAGE, DRIFT	Dark matter	
SF6	Test study	Dark matter	

Motivation of this study

p. 4

Radon as background

- Backgrounds from radioactive contaminants must be kept at a particularly low level.
- Radon (²²²Rn) is produced continuously from radium (²²⁶Ra) in the detector material.
- \rightarrow Due to its relatively long lifetime (3.8 days), some reach at the detector fiducial volume.
- Rn should be reduced by material screening before the detector construction. by purification process during the detector operation.

Motivation and goal

- For monitoring purpose, Rn in gas (liquid) is precisely measured in real-time.
 - → Development of the Rn detector with an electrostatic collection method.
- Evaluate the detector performance by filling various gases (such as, Ar, Xe, CF4, SF6).
- Develop a purification method and evaluate its Rn removal efficiency.

Design of radon detector

Requirement

 Monitor the radon concentration in gas with an accuracy of < 1 mBq/m³.

Main component

- (1) Stainless steel vessel
- → Inner surface is electropolished to reduce its intrinsic radon BG.
- (2) Volume: 80 L
- → Airtight structure by using VCR/ICF metal gaskets to prevent the outer gas from entering inside.
- (3) **PIN-photodiode** and HV divider → Form the electrical field and collect Rn daughters.

~80 L

18×18 mm²

PIN photodiode (PD)

40.8 cm

p. 5

Electrostatic collection

Electrostatic collection

- Positive ions from ²²²Rn decay (²¹⁸Po⁺, ²¹⁴Po⁺, ²¹⁰Po⁺).
- Collect positive ions on PIN photo-diode by forming an electrical field inside the detector.
- Measure energy of α particle.

Performance

- High resolution of energy measurement.
 - \rightarrow ²¹⁴Po (7.69 MeV) is used as signal.
- The background rate is quiet low (0.7 count/day).
- → Intrinsic background is estimated as ~0.3 mBq/m³ for a single day measurement.
- To convert the count rate to the Rn concentration, the calibration factors were evaluated.

calibration factor = $\frac{^{214}Po \text{ count rate [count/day]}}{Rn \text{ concentration [mBq/m^3]}}$

Calibration system

Setup and requirement

- Kamioka observatory in the Super-Kamiokande area.
- Calibration with different conditions.

28×28 mm Rn detector (purified air), arXiv:2112.06614.

Results of calibrations

p. 8

Po neutralization $H_2O \rightarrow H^{-} + OH^{-}$ $OH + e^{-} \rightarrow OH^{-}$

 $OH^- + Po^+ \rightarrow Po + OH$

Calibration factor

- We conducted many calibrations by filling with purified air, Ar, CF4, Xe (past study).
- Difference of calibration factors may come from the molecular size of gases.
- The Rn detector can monitor the Rn concentration in those gases.
- Next step: calibration with Xe and SF6.

Rn removal with activated carbon fiber

Activated carbon fiber (ACF)

- Ingrained with micropores that significantly increase the surface area available for adsorption.
- Widely used for removing Rn from gas.

■ Results

- Found low intrinsic background ACF.
- High removal efficiencies for air/argon/CF4 while $(58.5 \pm 0.3^{+2.0}_{-13.6})\%$ for Xe.

p. 9

Summary

- Radon (Rn) is serious background in rare event experiments.
- To improve the detector's sensitivity, the Rn concentration should be reduced

and monitored.

- **Rn detector** is widely used for such monitoring purpose.
- We have developed the low background Rn detector and evaluated its performance by filling with various gases.
- We have estabished the calibration method to systematically evaluate its performance.
- Based on the calibration results, we found several dependence of its performance.
- Using the Rn detector, a Rn removal test with ACF was also conducted.
- Further studies with difference gases are scheduled.