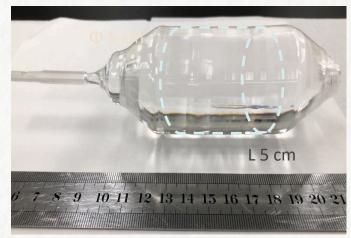



Preparation of the precursors for AMoRE-II crystals synthesis


Olga Gileva et al. 15th Jun. 2022

AMoRE experiment

The Advanced Molybdenum based Rare process Experiment is a series of experiments searching for the neutrinoless double beta $(0\nu\beta\beta)$ decay of the ¹⁰⁰Mo isotope with cryogenic detectors using molybdate (¹⁰⁰MoO₄)-based bolometric crystal detector. Various molybdate crystals such as ⁴⁸depCa¹⁰⁰MoO₄, Li₂¹⁰⁰MoO₄, Na₂Mo₂O₇, and PbMoO₄ for AMoRE-II, the second phase of the experiments, have grown and tested for their performances including background radiation levels.

Enriched Li₂¹⁰⁰MoO₄ (LMO)

Background requirements for AMoRE

The process requires that the detector apparatus and its components including the scintillating crystals and thus the initial materials used for crystal growth be extremely low in radioactive isotopes having decays, which may generate background noise signals in the ROI.

	AMoRE-I	AMoRE-II							
	<10 ⁻³ ckky in ROI	<10 ⁻⁴ ckky in ROI							
	~ 3 kg ¹⁰⁰ Mo	~ 100 kg ¹⁰⁰ Mo							
	18 crystals (5 LMO + 13 CMO)	\sim 420 crystals							
Contributio	Contribution to background from Th and U chains, ppt								
Internal crystal	<100	<10							

Precursors for the crystals production

Assuming a segregation of the impurities in the melt after the crystal growing, the concentration of the contaminants in the raw powders is expected to be less than 100 ppt

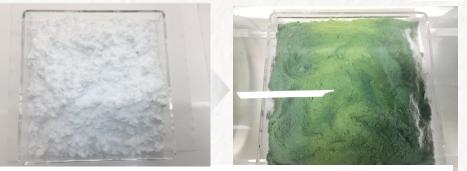
Outline

01

¹⁰⁰MoO₃ Purification, recovery and recycling 02 Li₂CO₃ Initial material selection, purification

03 CaCO₃ Purification, recovery and recycling 100MoO₃ Purification, recovery and recycling

1. sublimation under low vacuum


Enriched molybdenum oxide purification, mass-production and analysis

5 kg/month purification capacity at CUP

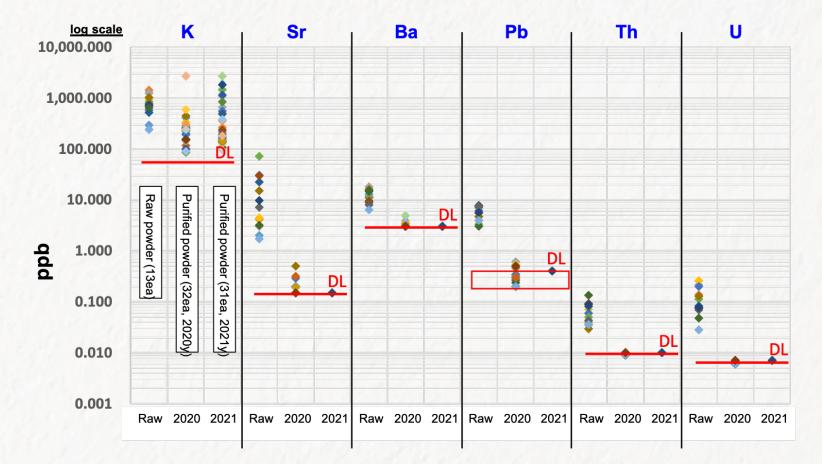
~99% recovery efficiency for the process

2. dissolving, co-precipitation, filtering

3. synthesis of ammonium polymolybdate powder and its annealing

4. final $^{100}\text{MoO}_3$ powder collection and its storage at Y2L A5

Analysis of purified ¹⁰⁰MoO₃ powders with ICP-MS at CUP


experiment #	Al, ppb	K, ppb	Cr, ppb	Mn, ppb	Fe, ppb	Ni, ppb	Cu, ppb	W, ppb	Sr, ppb	Ba, ppb	Pb, ppb	Th, ppt	U, ppt
Raw 100MoO3 powder (lot #3497)	1399	938	<300	<30	504	1073	<200	670	4	11	4.0	70	257
Purified products (examples)													
1	585	409	<200	<30	39	<20	<200	33	<0.15	3.9	0.33	<10	<7
11	630	253	<400	<30	26	<20	<200	43	<0.20	<3.0	<0.20	<9	<6
21	<30	246	<200	<30	33	<20	<200	38	<0.15	<3.0	<0.5	<10	<7
31	<30	150	<200	<30	26	<20	<200	648	<0.15	<3.0	<0.5	<10	<7
51	<100	146	<200	<30	18	<20	<200	601	<0.15	<3.0	<0.4	<10	<7

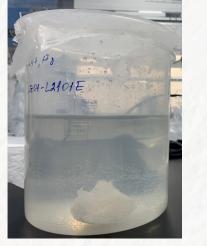
o ¹⁰⁰MoO₃ powder is dissolved in a strong HCl using microwave digestion system Ethos Easy, Milestone.

o 1 wt% solution is analyzed with ICP-MS using He and UHMI modes.

o Standard - addition calibration to minimize matrix effect

Reduction of impurities in the ¹⁰⁰MoO₃ produced

HPGe array measurement of purified ¹⁰⁰MoO₃ powder


HPGe	Unpurified #3172 (CC1, 1.6 kg, 14 days)	Unpurified #3434 (CAGe, 9.6 kg, 75 days)	Unpurified #3675 (CAGe, 9.8 kg, 93 days)	Unpurified #3824 (CAGe, 12.7 kg, 183 days)	Purified #3824 (CAGe, 12.0 kg, 152 days, preliminary)
²²⁸ Ac	< 1.0 (90% C.L.)	0.88 ± 0.13	0.703 ± 0.097	$\textbf{0.274} \pm \textbf{0.044}$	< 0.030 (90% C.L.)
²²⁸ Th	< 1.0 (90% C.L.)	0.669 ± 0.089	0.773 ± 0.093	$\textbf{0.234} \pm \textbf{0.040}$	< 0.026 (90% C.L.)
²²⁶ Ra	5.1 ± 0.4 (stat) ± 2.2 (syst)	1.19 ± 0.42	< 0.51 (90% C.L.)	$\textbf{0.273} \pm \textbf{0.036}$	0.069 ± 0.014
40 K	< 16.4 (90% C.L.)	36.0 ± 4.1	17.5 ± 2.0	8.8 ± 1.0	1.48 ± 0.27
⁸⁸ Y	Not observed	0.101 ± 0.016	0.090 ± 0.013	0.0564 ± 0.0067	Not observed
⁸⁸ Zr	Not observed	Not observed	Not observed	0.0354 ± 0.0074	Not observed
Unit: mBq	q/kg (kg: powder)			Reduced more) than 4 times

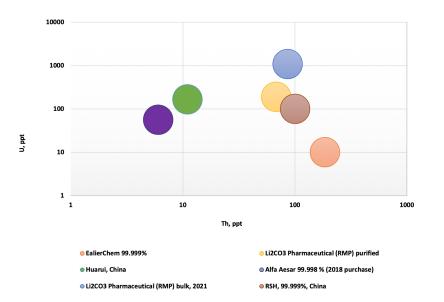
ICP-MS	Unpurified #3172	Unpurified #3434	Unpurified #3675	Unpurified #3824	Purified #3824
²³² Th	0.14	0.36	0.37	0.36	< 0.041
238U	0.94	2.7	0.93	0.96	< 0.087
⁴⁰ K	9.0	38	22	22	3.6 - 18.3

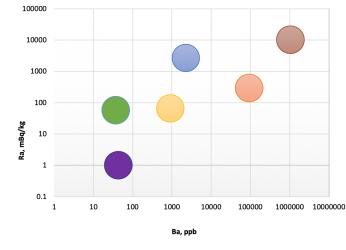
¹⁰⁰MoO₃ recovery from LMO melt

Residual LMO melt in the Ptcrucible

LMO melt dissolution

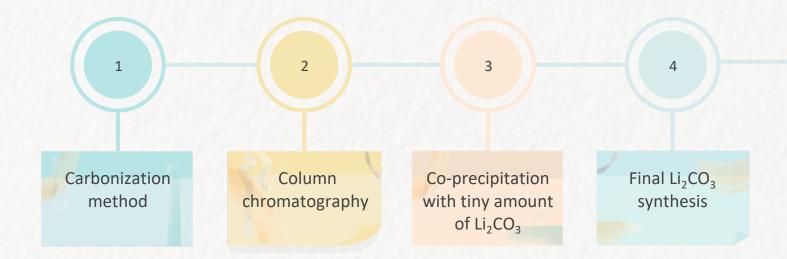
- 3 LMO crystal ingots are pulled from every crucible.
- The final melt is dissolved in DI-water, and insoluble impurities (Th, U, Pb, etc.) are filtered out with a membrane filter.
- Mo is separated from Li in form of molybdic acid (H₂MoO₄) via interaction with NH₄Cl.
- Separated molybdic acid is dissolved, purified with co-precipitation and recrystallized.


Recycling of the recovered ¹⁰⁰MoO₃ powder


	Al	К	Са	Ва	Sr	Pb	Th	U
	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	(ppb)	ppt	ppt
LMO melt	1450	606	579	16	0.67	<0.4	<8	28
¹⁰⁰ MoO ₃ powder, pure recovered	<100	131	<200	<3	<0.15	<0.4	<10	<7
¹⁰⁰ MoO ₃ powder, initial purified	<100	146	-	<3	<0.15	<0.4	<10	<7

- Recovered ¹⁰⁰MoO₃ powder is waiting for the HPGe array measurements.
- o ~99% recovery efficiency for the process

02 Li₂CO₃ Initial material selection, purification


- Radium, but not potassium, is our enemy to defeat.
- We failed to find pure enough commercial material.
- Huarui and RMP powders were chosen as precursors for further purification at CUP.

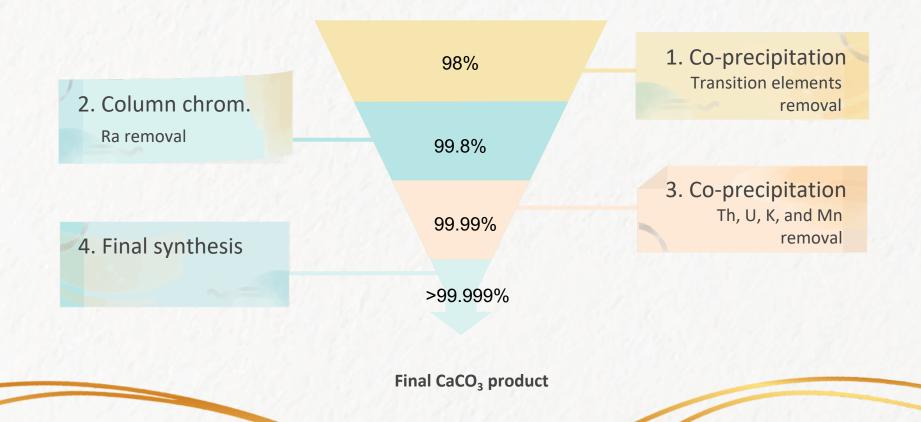
EalierChem 99.999%	Li2CO3 Pharmaceutical (RMP) purified
 Huarui, China 	Alfa Aesar 99.998 % (2018 purchase)
 Li2CO3 Pharmaceutical (RMP) bulk, 2021 	RSH, 99.999%, China

R&D on Li₂CO₃ purification at CUP

Impurities reduction for Li₂CO₃ powder

sample	⁴⁰ K, mBq/kg	²²⁸ Ac, mBq/kg	²²⁸ Th, mBq/kg	²²⁶ Ra, mBq/kg	K, ppb	Sr, ppb	Ba, ppb	Pb, ppt	Th, ppt	U, ppt
Huarui <i>,</i> 99.999%	6.50	HPGe	@CUP	30.00		12.84	ICP-MS	S@CUP	181,2	
Initial	<16.59	6.33 ± 1.28	5.47 ±0.67	57.38 ± 3.15	426	6	35	1397	8	156
PURIFIED	<6.02	<1.96	<1.86	<1.1	<60	0.5	61	<80	<6	<6
DF		>3	>2	>50	>7	>12		>17	>1.3	>26

>2	>3	>50	>7	>17	>26	>1.3
²²⁸ Th	²²⁸ Ac	Ra	к	Pb	U	²³² Th


 $CaCO_3$

03

Purification, recovery and recycling

	Al	К	Sr	Ва	Pb	Th	U
CaCO ₃	(ppm)	(ppm)	(ppm)	(ppm)	(ppb)	(ppb)	(ppb)
Enriched ⁴⁰ CaCO ₃	<2.0	<21.0	24.0	23.7	210	<0.8	<0.2
Initial 99.95%	81.5	20.3	207.2	2.3	512	33.1	878.0
Purified at CUP (2018)	11.1	1.45	175.6	1.6	5	<0.1	0.55
Purified at CUP (2019)	1.9	1.4	198.8	1.4	11	<0.1	<0.1
Purified at CUP (2020)	1.0	0.22	191	0.02	25	<0.1	<0.1
Purified at CUP (2021)		0.21	204	0.007	10.2	0.014	0.036
D.F.		97	1	328	51	2364	24388

R&D on CaCO₃ purification

Summary

- 1. Methods for purification of ¹⁰⁰MoO₃, Li₂CO₃, and CaCO₃ powders are being developed at CUP, IBS.
- 2. ¹⁰⁰MoO₃ purification at CUP is going smoothly. Over 90kg of powder was treated using the developed method. The purity of produced powders is confirmed with an ICP-MS and HPGes.
- **3**. Purification method for Li₂CO₃ powder using carbonization technique and column chromatography is under extensive study. With the current technique, over 30kg of powder was produced at CUP in the last year.
- 4. For the CaCO₃, the purification method development is ongoing. Big improvement was achieved on Ba (Ra tracer), Th, and U in the last year.
- 5. Methods for extraction, recovery, and purification of enriched MoO₃ and CaCO₃ from melt (LMO and CMO, respectively) were developed at CUP. The recovery efficiency for the methods is about 99%.

Thanks!

