

INFN ÖAW

Methodology used in Borexino for the identification of cosmogenic long-time decay background

Alessio Porcelli 17th June 2022

JGU

2022 WORKSHOP VIII

Borexino

Sited beneath Gran Sasso mountain (1400 m of rock shielding), Italy.

Borexino

Sited beneath Gran Sasso mountain (1400 m of rock shielding), Italy.

- 25% Coverage
- Light Yield (LY): 500 p.e./MeV
- Very low background
 - Nitrogen stripping
 - Distillation
 - Water extraction
- Continuous temperature and contamination monitoring

Borexino core is the most radio-clean spot on Earth with over 10 orders of magnitude below typical radioactivity levels

Signature for solar neutrinos: β -like spectrums (indistinguishable from the natural radioactivity (β^{-}/γ components)

Long-t decay cosmogenics

Cosmogenic background: produced by the interaction of Cosmic Rays

Long-time decay:

much longer than the data acquisition speed

Long-t decay cosmogenics

Cosmogenic background: produced by the interaction of Cosmic Rays **Long-time decay:** much longer than the data acquisition speed

Example: ¹¹C

• muon spallation kicks out a neutron from ¹²C $\mu + {}^{12}C \rightarrow \mu + {}^{11}C + n$

$$n + p \rightarrow D + \gamma_{2.2MeV}$$
 (250 µs)
¹¹C \rightarrow^{11} B + $e^+ + \nu_e$ (29.4 min

- hard to directly detect due to the long average β⁺ decay time
- ¹¹C decays β^+ , Q = 1.98 MeV
- Physics not well understood: no simulations are possible

C

C

C

Every cloud has a silver lining

The neutrino fluxes to fit are many: need constraints!

Finding ¹¹C candidates can be a benchmark for creating a dataset separator: one ¹¹C-**enriched** and one ¹¹C-**depleted**

Strategy: simultaneously fit of the two subsets allowing only the ¹¹C rate to be different

We need to define a time and space "veto" region: evens in "veto" \Rightarrow enriched dataset; else \Rightarrow depleted

We need to define a time and space "veto" region: evens in "veto" \Rightarrow enriched dataset; else \Rightarrow depleted ...what we know:

$$\mu + {}^{12}\text{C} \to \mu + {}^{11}\text{C} + n$$

$$n + p \to D + \gamma_{2.2\text{MeV}} \quad (250 \ \mu\text{s})$$

$${}^{11}\text{C} \to {}^{11}\text{B} + e^+ + \nu_e \quad (29.4 \ \text{min})$$

We need to define a time and space "veto" region: evens in "veto" ⇒ enriched dataset; else ⇒ depleted ...what we know:

We need to define a time and space "veto" region: evens in "veto" ⇒ enriched dataset; else ⇒ depleted ...what we know:

$$\mu + {}^{12}\text{C} \rightarrow \mu + {}^{11}\text{C} + n$$

$$n + p \rightarrow D + \gamma_{2.2\text{MeV}} \quad (250 \ \mu\text{s})$$

$$1^{11}\text{C} \rightarrow {}^{11}\text{B} + e^{+} + \nu_{e} \quad (29.4 \ \text{min})$$

$$\lim_{t \to 0} S_{e_{to}} \stackrel{s}{\rightarrow} S_{e_{to$$

Likelihood VS Threshold

Is TFC working?

depleted

All components are identical except ¹¹C (+ ¹⁰C and ⁶He) It is not expected a 100% separation efficiency; hence, some residual ¹¹C is expected in **depleted**

enriched

Performances

• Exposure fraction: fraction of toyMC events falling in the ¹¹C depleted sample (not vetoed)

 ε depleted

• **Tagging efficiency**: tagged events in ¹¹C region normalized by the sample fraction (by using Exposure fraction).

$$e_{\text{tagged}} = 1 - \frac{{}^{11}C_{\text{untagged}}}{{}^{11}C_{\text{total}}} \cdot \frac{1}{{}^{\epsilon}\text{depleted}}$$

	Borexino data periods:	2012 - 2016	2016-2020
		Phase-II	Phase-III
Hard Cut	Tagging efficiency (e_{tagged}) Exposure fraction $(\varepsilon_{\text{depleted}})$	$\begin{array}{ c c } 90.2\% \\ 63.3\% \end{array}$	$90.7\%\ 63.6\%$
Likelihood	Tagging efficiency (e_{tagged}) Exposure fraction $(\varepsilon_{\text{depleted}})$	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	$90.1\% \\ 65.6\%$

Can we leave out the FVV?

Along the μ -tracks, multiple ¹¹C are generated by spallation Can we use these "¹¹C bursts" to recover some exposure?

What we know of ¹¹C

- Charge spectrum: 400≤E(p.e.)≤1000
- Decay time: $\tau = 1.8e9 \ \mu s = 0.5 \ h$

Idea: correlations along tracks

- in time: ~ $P_{\text{decay}}(t, \tau)$
- in space: unknown pdf
- ...full of non-correlated event

BOREXIAD W

1. Time correlation

- 1. Select events in ¹¹C E region in a 2 hours window (non muon/neutron, $800 \le E[keV] < 2000$)
- 2. Assign to each event a weight given by the decay p.d.f
- Check for time correlation: good distribution, sum of weight > of a threshold (parameter)

1. Time correlation

- 1. Select events in ¹¹C E region in a 2 hours window (non muon/neutron, $800 \le E[keV] < 2000$)
- 2. Assign to each event a weight given by the decay p.d.f
- Check for time correlation: good distribution, sum of weight > of a threshold (parameter)

1. Time correlation

- 1. Select events in ¹¹C E region in a 2 hours window (non muon/neutron, $800 \le E[keV] < 2000$)
- 2. Assign to each event a weight given by the decay p.d.f
- Check for time correlation: good distribution, sum of weight > of a threshold (parameter)

2. Space correlation

- Starting from the first 4 events, test the change of the 3 squared correlation factors R² [backups!]
- 2. Change must not be larger than a **Tolerance** and R² cannot be smaller than **R2lim** (both parameters!)
- 3. Best correlation line (Theil-Sen lin.reg.): R2line

1. Time correlation

- 1. Select events in ¹¹C E region in a 2 hours window (non muon/neutron, $800 \le E[keV] < 2000$)
- 2. Assign to each event a weight given by the decay p.d.f
- Check for time correlation: good distribution, sum of weight > of a threshold (parameter)

2. Space correlation

- Starting from the first 4 events, test the change of the 3 squared correlation factors R² [backups!]
- 2. Change must not be larger than a **Tolerance** and R² cannot be smaller than **R2lim** (both parameters!)
- 3. Best correlation line (Theil-Sen lin.reg.): R2line

3. Tagging

- 1. To be unbiassed, ignore if an eventi is in ¹¹C E region!
- 2. Populate the line: starting from events closer to the line, check their correlation factors R²

1. Time correlation

- 1. Select events in ¹¹C E region in a 2 hours window (non muon/neutron, $800 \le E[keV] < 2000$)
- 2. Assign to each event a weight given by the decay p.d.f
- Check for time correlation: good distribution, sum of weight > of a threshold (parameter)

2. Space correlation

- Starting from the first 4 events, test the change of the 3 squared correlation factors R² [backups!]
- 2. Change must not be larger than a **Tolerance** and R² cannot be smaller than **R2lim** (both parameters!)
- 3. Best correlation line (Theil-Sen lin.reg.): R2line

3. Tagging

- 1. To be unbiassed, ignore if an eventi is in ¹¹C E region!
- 2. Populate the line: starting from events closer to the line, check their correlation factors R²

1. Time correlation

- 1. Select events in ¹¹C E region in a 2 hours window (non muon/neutron, $800 \le E[keV] < 2000$)
- 2. Assign to each event a weight given by the decay p.d.f
- Check for time correlation: good distribution, sum of weight > of a threshold (parameter)

2. Space correlation

- Starting from the first 4 events, test the change of the 3 squared correlation factors R² [backups!]
- 2. Change must not be larger than a **Tolerance** and R² cannot be smaller than **R2lim** (both parameters!)
- 3. Best correlation line (Theil-Sen lin.reg.): R2line

3. Tagging

- 1. To be unbiassed, ignore if an eventi is in ¹¹C E region!
- 2. Populate the line: starting from events closer to the line, check their correlation factors R²
- 3. Stop populating when the R² < R2line
- 4. All events that populate the line are Tagged

Is BI working?

TFC and **BI** are meant to be combined with an OR logic!

See "Eur.Phys.J.C 81 (2021) 12, 1075" for details

BI "minimal gain" configuration:

with the ~ same tagging power of the (HC-)TFC, what is the minimal gain in exposure rate?

HC-TFC		Phase-II	Phase-III
	Tagging efficiency (e_{tagged})	79.5%	77.6%
ΠΟΓVV	Exposure fraction ($\varepsilon_{depleted}$)	70.8%	69.7%
	Tagging efficiency (e_{tagged})	89.3%	90.4%
$\mathbf{HO} \mathbf{F} \mathbf{V} \mathbf{V} + \mathbf{D} \mathbf{I}$	Exposure fraction ($\varepsilon_{depleted}$)	68.3%	66.7%
with FUV (standard)	Tagging efficiency (e_{tagged})	90.2%	90.7%
with FVV (standard)	Exposure fraction ($\varepsilon_{depleted}$)	63.3%	63.6%

BI "minimal gain" configuration:

with the ~ same tagging power of the (HC-)TFC, what is the minimal gain in exposure rate?

HC-TFC		Phase-II	Phase-III
	Tagging efficiency (e_{tagged})	79.5%	77.6%
ΠΟΓVV	Exposure fraction ($\varepsilon_{depleted}$)	70.8%	69.7%
$\mathbf{r} \in \mathbf{F} \mathbf{V} \mathbf{V} + \mathbf{D} \mathbf{I}$	Tagging efficiency (e_{tagged})	89.3%	90.4%
$\mathbf{HO} \mathbf{F} \mathbf{V} \mathbf{V} + \mathbf{D} \mathbf{I}$	Exposure fraction ($\varepsilon_{depleted}$)	68.3%	66.7%
with FVV (standard)	Tagging efficiency (e_{tagged})	90.2%	90.7%
with rvv (standard)	Exposure fraction ($\varepsilon_{depleted}$)	63.3%	63.6%

BI "minimal gain" configuration:

with the ~ same tagging power of the (HC-)TFC, what is the minimal gain in exposure rate?

HC-TFC		Phase-II	Phase-III
$\mathbf{r} \in \mathbf{F} \mathbf{V} \mathbf{V}$	Tagging efficiency (e_{tagged})	79.5%	77.6%
погvv	Exposure fraction ($\varepsilon_{depleted}$)	70.8%	69.7%
$\mathbf{r} \in \mathbf{F} \mathbf{V} \mathbf{V} + \mathbf{P} \mathbf{I}$	Tagging efficiency (e_{tagged})	89.3%	90.4%
$\mathbf{HO} \mathbf{\Gamma} \mathbf{V} \mathbf{V} + \mathbf{DI}$	Exposure fraction ($\varepsilon_{depleted}$)	68.3%	66.7%
with FUV (standard)	Tagging efficiency (e_{tagged})	90.2%	90.7%
with FVV (Standard)	Exposure fraction ($\varepsilon_{depleted}$)	63.3%	63.6%
		and the are not	alle an an and a state of the

BI "minimal gain" configuration:

with the ~ same tagging power of the (HC-)TFC, what is the minimal gain in exposure rate?

HC-TFC		Phase-II	Phase-III
no FVV	Tagging efficiency (e_{tagged})	79.5%	77.6%
	Exposure fraction ($\varepsilon_{depleted}$)	70.8%	69.7%
no FVV \perp BI	Tagging efficiency (e_{tagged})	89.3%	90.4%
	Exposure fraction ($\varepsilon_{depleted}$)	68.3%	66.7%
with FVV (standard)	Tagging efficiency (e_{tagged})	90.2%	90.7%
with F V V (Standard)	Exposure fraction ($\varepsilon_{depleted}$)	63.3%	63.6%
This is a borderline case!			
The best configuration will be determined by the			
best trade-off between etagged and Edepleted:			
how much fit performance we can gain?			
Simulation ongoing			

Learning from Borexino...

Three-Fold Coincidence:

- Used NOT TO IDENTIFY (i.e., not remove) ¹¹C events, but to separate (i.e., treat) the dataset into one enriched and one depleted of ¹¹C
- Two approaches: Hard Cut (HC) used as official, Likelihood (LH) as cross-checker
- To be conservative, a Full Veto Volume (FVV) is applied: when boards saturate and the runs break, 2.5 hours of full volume vetoed are considered
- Fundamental for the last years Borexino's results (pp, pep, CNO...)

Burst identification:

- to be used TOGETHER (OR logic) with TFC
- instead of 2.5 hours of FVV, we catch at least the high multiplicity ¹¹C ("bursts")
- \bigcirc ONGOING simulations for $e_{tagged} / \epsilon_{depleted}$ best trade-off

Learning from Borexino...

Three-Fold Coincidence:

- Used NOT TO IDENTIFY (i.e., not remove) ¹¹C events, but to separate (i.e., treat) the dataset into one enriched and one depleted of ¹¹C
- Two approaches: Hard Cut (HC) used as official, Likelihood (LH) as cross-checker
- To be conservative, a Full Veto Volume (FVV) is applied: when boards saturate and the runs break, 2.5 hours of full volume vetoed are considered
- Fundamental for the last years Borexino's results (pp, pep, CNO...)

Burst identification:

- to be used TOGETHER (OR logic) with TFC
- instead of 2.5 hours of FVV, we catch at least the high multiplicity ¹¹C ("bursts")
- \oplus ONGOING simulations for e_{tagged} / $\epsilon_{depleted}$ best trade-off

THANK YOU!

BACKUPS

...some math for R²s

$$R_{ij;k}^2 = (\rho_{ik}^2 + \rho_{jk}^2 - 2\rho_{ij}\rho_{ik}\rho_{jk})/(1 - \rho_{ij}^2) [\rho \text{ is the Pearson's correlation}]$$

- $\rho = \operatorname{cov}(\alpha, \beta) / \sqrt{\operatorname{Var}(\alpha) \cdot \operatorname{Var}(\beta)}$ [Pearson's correlation]
- Theil-Sen regression: median of all possibile lines

BI "minimal gain" configuration:

with the ~ same tagging power of the (HC-)TFC, what is the minimal gain in exposure rate?

HC-TFC		Phase-II	Phase-III
no FVV	Tagging efficiency (e_{tagged}) Exposure fraction $(\varepsilon_{\text{depleted}})$	$79.5\%\70.8\%$	$77.6\%\ 69.7\%$
no FVV + BI	Tagging efficiency (e_{tagged})Exposure fraction ($\varepsilon_{depleted}$)	89.3% 68.3%	90.4% 66.7%
with FVV (standard)	Tagging efficiency (e_{tagged}) Exposure fraction $(\varepsilon_{\text{depleted}})$	$90.2\%\ 63.3\%$	$90.7\%\ 63.6\%$

BI "minimal background" configuration:

outside the ¹¹C energy region, $e_{tagged} \sim 0$. This configuration is optimized through a further reduction of this e_{tagged}

$\mathbf{r} \in \mathbf{F} \mathbf{V} \mathbf{V} + \mathbf{D} \mathbf{I}$	Tagging efficiency (e_{tagged})	87.2%	88.6%
IIO F V V + DI	Exposure fraction ($\varepsilon_{depleted}$)	70.2%	69.2%

BI "minimal gain" configuration:

with the ~ same tagging power of the (HC-)TFC, what is the minimal gain in exposure rate?

HC-TFC		Phase-II	Phase-III
no FVV	Tagging efficiency (e_{tagged}) Exposure fraction $(\varepsilon_{\text{depleted}})$	$79.5\%\ 70.8\%$	$77.6\%\ 69.7\%$
no FVV + BI	Tagging efficiency (e_{tagged}) Exposure fraction $(\varepsilon_{depleted})$	89.3% 68.3%	$90.4\% \\ 66.7\%$
with FVV (standard)	Tagging efficiency (e_{tagged}) Exposure fraction $(\varepsilon_{\text{depleted}})$	90.2% 63.3%	90.7% 63.6%

BI "minimal background" configuration:

outside the ¹¹C energy region, $e_{tagged} \sim 0$. This configuration is optimized through a further reduction of this e_{tagged}

no $FVV + BI$	Tagging efficiency (e_{tagged})	87.2%	88.6%
	Exposure fraction $(\varepsilon_{\text{depleted}})$	70.2%	69.2%

BI "minimal gain" configuration:

with the ~ same tagging power of the (HC-)TFC, what is the minimal gain in exposure rate?

HC-TFC		Phase-II	Phase-III
no FVV	Tagging efficiency (e_{tagged}) Exposure fraction $(\varepsilon_{\text{depleted}})$	$79.5\%\70.8\%$	$77.6\%\ 69.7\%$
no $FVV + BI$	Tagging efficiency (e_{tagged}) Exposure fraction $(\varepsilon_{\text{depleted}})$	$89.3\%\ 68.3\%$	$90.4\%\ 66.7\%$
with FVV (standard)	Tagging efficiency (e_{tagged}) Exposure fraction $(\varepsilon_{\text{depleted}})$	90.2% 63.3%	90.7% 63.6%

BI "minimal background" configuration:

outside the ¹¹C energy region, $e_{tagged} \sim 0$. This configuration is optimized through a further reduction of this e_{tagged}

no $FVV + BI$	Tagging efficiency (e_{tagged})	87.2%	88.6%
	Exposure fraction $(\varepsilon_{\text{depleted}})$	70.2%	69.2%

