⁴²Ar background in nEXO

Venkatesh Veeraraghavan

University of Alabama, Iowa State University

Low Radioactivity Techniques 2022 17-Jun-2022

Introduction

- nEXO background sources
 - Intrinsic radioactivity
 - Steady-state ²²²Rn
 - Expossure-based
- N¹ year, inner two tonnes = 0.5
 - Imperative to identify, study and quantify all kinds of backgrounds
- Focus of this presentation: ⁴²Ar in ^{enriched}Xe

Most recent nEXO sensitivity paper

J. Phys. Nucl. Part. Phys. 49, 015104 (2022)

⁴²Ar background for nEXO

- Trace amounts of argon could be present in ^{enriched}Xe
- ⁴²Ar is a background for nEXO

$${}^{42}_{18}\text{Ar} \xrightarrow[T_{1/2} = 32.9 \text{ y}]{}^{42}_{19}\text{K} \xrightarrow[T_{1/2} = 12.4 \text{ h}]{}^{42}_{20}\text{Ca}$$

Nuclide	Q-value (keV)	
⁴² Ar	599	
⁴² K	3525	

- 2424 keV γ -ray co-incident in ⁴²K decay (BF 0.0002)
- To quantify ⁴²Ar background for nEXO
 - Estimate ⁴²Ar in ^{enriched}Xe
 - Use nEXO detector design information
 - nEXO simulations
 - fraction of ionic ⁴²K
 - effect of xenon re-purification
 - efficiency of purifier to remove ⁴²K

⁴²Ar estimate in ^{enriched}Xe

• Measurements of relative abundance of ⁴²Ar in ^{natural}Ar

Experiment	Year	Relative abundance of ⁴² Ar in ⁴⁰ Ar		
		atoms/atom (10^{-21})	Specific activity (µBq/kg)	
DBA	1998	< 6 (90% C.L.)	< 60 (90% C.L.)	
DBA	2003	< 4.3 (90% C.L.)	< 43 (90% C.L.)	
GERDA	2014	$9.1^{+0.8}_{-2.0}$ to $16.8^{+2.2}_{-1.8}$	91^{+8}_{-20} to 168^{+22}_{-18}	
DBA	2016	$9.2^{+2.2}_{-4.6}$	92 ⁺²² -46	
DEAP	2019	4.04 ± 0.59	40.4 ± 5.9	

• Measurement of argon content in enriched Xe

 $7.6\pm1.8\cdot10^{-9}~g/g$ [EXO-200, 2012]

- Relative differences for ⁴²Ar and ⁴⁰Ar during centrifugal separation, assumed to be in the range of 1-9
- ⁴²Ar content in ^{enriched}Xe
 - 0.7 to 16.1 pBq/kg
 - 5 to 119 atoms in entire ^{enriched}Xe in nEXO TPC

Modeling of ⁴²K background in nEXO

• Differential equation for ⁴²K

$$\frac{\mathrm{d}\mathsf{N}_{\mathsf{K}}(t)}{\mathrm{d}t} = \frac{\mathsf{N}_{\mathsf{A}}(t)}{\tau_{\mathsf{A}}} - \frac{\mathsf{N}_{\mathsf{K}}(t)}{\tau_{\mathsf{K}}} - \mathsf{N}_{\mathsf{K}}(t) \cdot (\frac{f}{\mathsf{V}}) \cdot \epsilon$$

f/V is fraction of xenon that encounters purifier/unit time ϵ is efficiency of purifier to remove $^{42}{\rm K}$

• Number of ⁴²K decays in 1 year

$$N_{K}^{1 \text{ year}} = rac{\mathcal{A}_{A}(0) \cdot M_{LXe} \cdot au_{A} \cdot 0.0208}{1 + au_{K} \cdot rac{f}{V} \cdot \epsilon}$$

- Ionic ⁴²K drift to cathode, neutral ⁴²K remain in active LXe
- MC efficiency for ⁴²K decays

nEXO part	Efficiency (10 ⁻³)		
	SS	MS	
Active LXe	6.0 (0.4%)	2.2 (0.7%)	
Cathode	7 · 10 ⁻⁵ (38%)	6.8 · 10 ⁻⁴ (12%)	
Inactive LXe	6 · 10 ^{−5} (41%)	4.1 · 10 ⁻⁴ (16%)	

SS (single site): Energy deposited in single spatial location MS (multi site): Energy deposited in multiple locations

⁴²Ar background for nEXO

- Xenon re-circulation time period is 4 days
- Efficiency of purifier to remove ⁴²K is unknown

- Background count (1 year, inner two tonnes): 2.6 · 10⁻³
 - mass separation factor between argon isotopes: 9
 - ionic fraction of ⁴²K: 0.76
 - ϵ =0 and arbitrary f/V

$^{\rm 42}Ar$ background for nEXO

ϵ	f/V	f _{42K+}	Relative mass	N ^{1 year} bkg	f _{BKG}
	(day ⁻¹)		separation $\left(\frac{40}{42}$ Ar $\right)$		(%)
0.0	1-4	0.76	9.0	2.6 · 10 ^{−3}	0.29
			1.0	$2.9 \cdot 10^{-4}$	0.03
		0.0	9.0	1.1 · 10 ⁻²	1.21
			1.0	$1.22 \cdot 10^{-3}$	0.13
1.0	1	0.76	9.0	1.49 · 10 ⁻³	0.16
			1.0	$1.65 \cdot 10^{-4}$	0.02
		0.0	9.0	$6.31 \cdot 10^{-3}$	0.7
			1.0	$7 \cdot 10^{-4}$	0.08
	4	0.76	9.0	2.2 · 10 ⁻³	0.24
			1.0	2.4 · 10 ⁻⁴	0.03
		0.0	9.0	9.3 · 10 ⁻³	1.02
			1.0	$1.03 \cdot 10^{-3}$	0.11
1.0	1	0.76	1	7 · 10 ^{−5}	0.008

Summary

- A central objective for nEXO is to identify, study and quantify the exhaustive set of backgrounds relevant to the experiment
- Background from ⁴²Ar in LXe resides in the central region of the nEXO TPC and is treated here
- The analysis presented here has been adapted from EXO-200 [Mitchell Hughes dissertation, 2019]
- Background from ⁴²Ar in LXe has been determined to be *O* (1%) and not expected to significantly affect nEXO's sensitivity

nEXO collaboration

