The Background model of the CUPID-Mo experiment

Pia Loaiza on behalf of the CUPID-Mo collaboration

LRT 2022, 17 June 2022

$0 u\beta\beta$ with scintillating bolometers

Heat and light measurement

 γ/β - α identification

The CUPID-Mo experiment

- A demonstrator for next generation experiment CUPID (Cuore Upgrade with Particle IDentification)
- ¹⁰⁰Mo $Q_{\beta\beta} = 3034$ keV
- A competitive $0\nu\beta\beta$ experiment in its own right World's best limit $T_{1/2}$ in ¹⁰⁰*Mo*
- + Li_2^{100}MoO_4 scintillating crystals + NTD Ge sensors \rightarrow heat
- Ge wafers + NTD \rightarrow light detectors

Teflon: weak thermal link

CUPID-Mo and CUPID

CUPID-Mo

- Installed at LSM, in the EDELWEISS-III cryogenic set-up
- 20 Li₂¹⁰⁰MoO₄
- Copper casings

CUPID

- To be installed at LNGS
- 1596 Li2¹⁰⁰MoO₄
- Open structure

Data

- Data taking between March 2019 and June 2020
- Exposure: 2.71 kg · y
- $\mathcal{M}_{1,\beta\gamma}$
 - Events in one detector identified as β , γ
 - $0\nu\beta\beta$ signal like
- $\mathcal{M}_{2\Sigma}$
 - Coincidences between 2 crystals above energy threshold in \pm 10 ms time window
 - Sum of the two deposited energies
 - Constrains levels of external contaminations
- $\mathcal{M}_{1,\alpha}$
 - \mathcal{M}_1 events with Energy > 3 MeV
 - Constrains levels of contaminations for crystal and reflectors
 - Allows differentiation between bulk and surface events in crystals

Monte Carlo simulations

Detailed implementation of the set-up geometry Background sources considered:

- Crystals, Reflectors (account for sources facing directly the crystals)
 - Bulk
 - Surface, exponential density profile $e^{x/\lambda}$
- '10 mK' sources:

Geant4 rendering of the CUPID-Mo detectors

Monte Carlo simulations

- Cryostat and shields
 - Cryostat screens
 - Outer cryostat screen
 - Polyethylene internal (1K)

Detector response model

- Detector effects convolved into MC spectra
 - Energy resolution
 - Efficiency
- As in data, we compute:
- Multiplicity
- Delayed coincidences
- Light detector signal. For each energy deposited in the crystal a scintillation light is randomly generated according to the light distribution in the data

Background model

- Describe the experimental data by a linear combination of the MC spectra
- The parameters of the model tell us the radioactive contamination of the various components
- A robust background model allows for several further physics studies
- Simoultaneous fit of $\mathcal{M}_{1,\beta\gamma}$, $\mathcal{M}_{2\Sigma}$, and $\mathcal{M}_{1,\alpha}$, with a Bayesian approach (JAGS based)
- 66 Monte Carlo sources
- Variable binning
- Surface contamination implantation depth $\lambda=10~\rm{nm}$
- Intervals:
 - $\mathcal{M}_{1,\beta\gamma}$ [100; 4000] keV
 - $\mathcal{M}_{2\Sigma}$ [400; 4000] keV
 - $\mathcal{M}_{1, \alpha}$ [3000; 10000] keV

 $\mathcal{M}_{1,\beta\gamma}$ fit

• The model is able to describe our experimental data very well

• $\chi^2/\text{NDF} = 148/168$

Background model: components in $\mathcal{M}_{1,\alpha}$

- Crystal bulk contaminations characterized by sharp peaks
- Crystal surface contaminations include a continuum due to degraded $\alpha{'}{\rm s}$
- Close sources bulk contamination give a flat continuum

Background model: Li2¹⁰⁰MoO₄ bulk contaminations

Nuclide	Activity $[\mu Bq/kg]$
²¹⁰ Pb	96 ⁺⁴ _24
¹⁹⁰ Pt	$0.39 \begin{array}{c} +0.07 \\ -0.12 \end{array}$
⁸⁷ Rb	< 98
⁹⁰ Sr-Y	179 + 24 - 46
⁴⁰ K	$109 \stackrel{+23}{_{-27}}$

[1] D. Poda et al [CUPID-Mo collab], Neutrino 2020. (Ascribing all events in peak to bulk contaminations)

All U and Th contaminations in the crystal $< 1 \ \mu Bq/kg$

Background model: Li2¹⁰⁰MoO₄ Surface contaminations

PRELIMINARY

U/Th crystal surface contamination $< 3 \text{ nBq/cm}^2$

Background from crystals in CUPID

• We have used these crystal contaminations to estimate the crystal contribution in CUPID :

	Activity ²²⁶ Ra	Activity ²²⁸ Th	Bl ²²⁶ Ra/ ²²⁸ Th [ckky]
Bulk	$<$ 0.2 $\mu { m Bq/kg}$	$0.4^{+0.2}_{-0.1}~\mu{ m Bq/kg}$	-/ $(2.0^{+1.0}_{-0.6}) imes 10^{-6}$
Surface	$2.0^{+0.3}_{-0.7}~{\rm nBq/cm^2}$	$< 2.5 \ \mathrm{nBq/cm^2}$	$(1.0^{+0.2}_{-0.4}) \times 10^{-5} \ / < 1. \ \times \ 10^{-5}$

 $\begin{array}{l} 2 \cdot 10^{-5} \ {\rm cts}/({\rm keV} \cdot {\rm kg} \cdot {\rm y}) << 10^{-4} \ {\rm cts}/({\rm keV} \ {\rm kg} \ {\rm y}) \\ ({\rm CUPID} \ {\rm background} \ {\rm goal}) \end{array}$

CUPID-Mo Background Index

Posterior distributions of background index:

Background index in 3034 \pm 15 keV: 3.0^{+0.7}_{-0.6} \cdot 10⁻³ cts/(keV kg y) CUPID-Mo PRELIMNARY

Background index [cts/keV/kg/yr]

- CUPID-Mo was a demonstrator for CUPID and a $0\nu\beta\beta$ experiment in its own right (world's best limit $T_{1/2}$ in ¹⁰⁰*Mo*)
- We have developed a background model based on Bayesian statistics. The parameters of the model tell us the radioactive contamination of the various components, and, in particular, the ${\rm Li_2}^{100}{\rm MoO_4}$ crystals
- Li₂¹⁰⁰MoO₄ ²³⁸U/²³²Th daughters bulk contaminations < 1 μ Bq/kg, surface contaminations < 3 nBq/cm². Sufficient for CUPID background goal = 10⁻⁴ counts/(keV kg y)
- CUPID-Mo background index in ROI: $3.0^{+0.7}_{-0.6} \cdot 10^{-3}$ cts/(keV kg y)

Back up slides

• 20 $\text{Li}_2^{100}\text{MoO}_4$ crystals of 210 g, 97% enriched in $^{100}\text{Mo} \rightarrow$ 2.26 kg of ^{100}Mo

arXiv:2202.08716 [nucl-ex], submitted to EPJC

New world leading limit on $2\beta 0\nu$ of 100 Mo: $T_{1/2} > 1.8 \cdot 10^{24}$ y (90% CI)

 $m_{etaeta} <$ (0.28-0.49) eV

Delayed coincidences

²²²Rn

Select

