Background rejection in highly pixelated solid-state detectors

Alvaro E. Chavarria University of Washington

Nuclear Physics and Astrophysics

UNIVERSITY of WASHINGTON

Outline

- Highly pixelated solid-state detectors.
- DAMIC and Selena technologies.
- Background identification in DAMIC.
- Signals and backgrounds in Selena.
- Conclusion.

Pixelated solid-state devices

DAMIC

- CCDs for direct dark matter search.
- Multi-CCD array operating at SNOLAB since 2012.
- ► 50x more sensitive DAMIC-M will start operations at LSM in 2024.
- DM-e⁻ interactions:
 - ► First DM search results from ~eV ionization signals: PRL 118 (2017) 141803
 - Latest DM-e⁻ scattering results: PRL 123 181802 (2019)
- WIMP search: PRL 1

PRL 125 (2020) 241803

- 11 kg-day of data from seven-CCD array.
- First full background model in CCDs.

5

Full details: PRD 105 (2022) 062003

- Next generation neutrino experiment to perform zero-background spectroscopy of $\beta\beta$ decay and electron neutrinos in ⁸²Se.
- Low-noise CMOS charge readout sensor coupled to few mm-thick amorphous selenium (aSe) target layers.
- Concept paper with background estimates: JINST12 (2017) P03022
- ► Measurement of charge response: JINST16 (2021) P06018
- ► Snowmass 2021 white paper: arXiv:2203.08779 (2022)

 First demonstration of imaging electron tracks in a hybrid CMOS/ aSe device:

Background suppression

High resolution imaging in a solid-state target provides unique opportunities for signal/background discrimination!

- Determine the number and types of particles (β , α , etc.).
- Determine the end-point of β tracks by identifying the Bragg peak.
- Since atoms remain immobile in the solid target, we can identify radioactive decay sequences with time separations of up to weeks!

Particle ID in CCDs

- Based on cluster topology.
- *α* particles:
- Very high efficiency in selecting αs with E>100 keV_{ee}.

Select 95% NR and <1%
 ER with E>100 keV_{ee}.

Spatial correlations in DAMIC

• ²¹⁰Pb surface background:

• Cosmogenic ³²Si:

Search for spatially correlated β decays. Sensitivity with current data is a fraction of Bq/kg.

JINST16 (2021) P06019

Limits from DAMIC on the U and Th chains from coincidence analysis:

	Decay	$t_{1/2}$	Q value	Search	Energy cut [keV]	Time cut [d]	ε	n _{ev}	<i>A</i> [μBq/kg]
³² Si Cha	in								
³² Si	β	153 yr	227 keV	2 o ((1a)	$70 < E_{\beta 1} < 230$	$\Delta t < 70$	0.279	19.5	1.40
³² P	β	14.3 d	1.71 MeV	$\beta \rightarrow \beta \left\{ (1b) \right\}$	$0.5 < E_{\beta 1} < 70$	$25 < \Delta t < 70$	0.088	12.7	140 ± 30
²³⁸ U Cha	ain								
²³⁸ U	α	4.47 Gyr	4.27 MeV		2200 . E . 4600				
²³⁴ Th	β	24.1 d	274 keV	$\alpha \rightarrow \beta$	$5800 < E_{\alpha 1} < 4000$	$\Delta t < 120$	0.650	-0.2	< 11
^{234m} Pa	β	1.16 min	2.27 MeV		$E_{\beta 2} > 0.5$				
²³⁴ U	α	246 kyr	4.86 MeV	²³⁸ U (s.e.)					
²³⁰ Th	α	75.4 kyr	4.77 MeV						no limit
²²⁶ Ra	α	1.60 kyr	4.87 MeV						
²²² Rn	α	3.82 d	5.59 MeV						
²¹⁸ Po	α	3.10 min	6.11 MeV	$(\alpha + \alpha + \alpha)$	$E_{\alpha} > 15000$	$\Delta t = 0$			
²¹⁴ Pb	β	27.1 min	1.02 MeV	OR			~ 1	0	< 5.3
²¹⁴ Bi	β	19.9 min	3.27 MeV	$(\alpha + \alpha) \rightarrow \beta/\alpha$	$E_{\alpha 1} > 10000$	$\Delta t = t_{\exp}$			
²¹⁴ Po	α	164 μs	7.83 MeV						
²¹⁰ Pb	β	22.2 yr	63.5 keV	$0 \rightarrow 0$ (2)	05 < E < 70	A	0 724	471	< 160
²¹⁰ Bi	β	5.01 d	1.16 MeV	$p \rightarrow p(2)$	$0.3 < E_{\beta 1} < 70$	$\Delta l < 23$	0.754	4/.1	< 100
²¹⁰ Po	α	138 d	5.41 MeV						
²³² Th Cl	hain								
²³² Th	α	14.0 Gyr	4.08 MeV	²²⁸ Th (s.e.)					< 7.3
²²⁸ Ra	β	5.75 yr	45.5 keV		0.5	A 1 0	0.440	2.6	. 10
²²⁸ Ac	β	6.15 hr	2.12 MeV	$\beta \rightarrow \beta$ (3)	$0.5 < E_{\beta 1} < 55$	$\Delta t < 1.3$	0.440	2.6	< 40
²²⁸ Th	α	1.91 yr	5.52 MeV						
²²⁴ Ra	α	3.63 d	5.79 MeV		E 10000	A	0 707	0	. 7.2
²²⁰ Rn	α	55.6 s	6.40 MeV	$\alpha \to (\alpha + \alpha)$	$E_{\alpha 2} > 10000$	$\Delta t = t_{\exp}$	0.727	0	< 1.5
²¹⁶ Po	α	145 ms	6.91 MeV						
²¹² Pb	β	10.6 hr	569 keV						

JINST16 (2021) P06019

NR ID by spatial correlations

- Record ionization events at nominal operating T ~ 120 K.
- Warm up CCD.
- Identify defects ("hot spots" from leakage current) during warmup.
- Correlate them!
- Preliminary: >80% of of NR with E>100 keV_{ee} produce a measurable defect (generates >10 e⁻ per min).
- Investigating how much it improves NR/ER discrimination.

Selena $\beta\beta$

- By identification of Bragg peak we can achieve 10⁻³ suppression of single electron background, with 50% signal acceptance.
- Bulk backgrounds suppressed by α/β particle ID, spatial correlations.

Background rate <6 x 10⁻⁵ /keV/ton/year! JINST12 (2017) P03022 T_{1/2} > 10²⁸ years limit on ⁸²Se $0\nu\beta\beta$

 Pixel size 15 µm² and few mm thick aSe.

[pixel

$\beta\beta$ backgrounds

Background source	Raw rate / (keV ton y)-1	After disc.
β-decay (bulk)	5.8	6.4 x 10 ⁻⁸
β-decay (surface)	7.1	2.1 x 10 ⁻⁷
β-decay (cosmogenic)	1.7 x 10 ⁻³	2.6 x 10 ⁻⁶
γ-ray (photoelectric)	1.3 x 10 ⁻²	1.3 x 10 ⁻⁵
γ-ray (Compton)	2.8 x 10 ⁻²	7.1 x 10 ⁻⁶
γ-ray (pair production)	3.3 x 10⁻⁵	3.3 x 10 ⁻⁶

JINST12 (2017) P03022

Background challenges very different from other experiments

• Example U+Th γ :

3000.0 <i>2</i> 3053.9 <i>2</i>	0.0086 % <i>9</i> 0.0209 % <i>23</i> ◀—	Photoelectric	3475.1 3708.4 20	1 T ⁸⁰	0.0015 % <i>15</i> 0.0020 % <i>20</i>	- Compton	
3081.79 <i>25</i>	0.0059 % 18		3960.9	0.0015 % 15	scattering		
3094.0 <i>4</i> 214 D :	5.9E-4 % 18	absorption					
3142.6 4 214BI	0.00123 % 14						
3149.0 5	8.6E-5 % <i>9</i>	U+Th γ rays contribute <1 background in R					
3160.7 6	5.5E-4 % 14			40			
3183.6 4	0.00136 % 23	every 10 ⁹ deca	ays (<1 11	n 10	U ton yea	ar at 10 ppt)	

ν_{e} detection

ν_e backgrounds

- Expected number of three accidental events in 100 µm² (22 µg) is <10-4 in 100 ton year.
- Other α, p, or n reactions that make ⁸²Br* have a different prompt event topology.
- No cosmogenic isotope starts a decay chain that mimics the triple sequence.

 Some neutron captures on Se isotopes can give triple sequences but their event topologies are also very different.

> No identified background to mimic the triple sequence. Possibility of zero background *v* spectroscopy!

Solar v spectrum

 $v_e + {}^{82}Se \longrightarrow {}^{82}Br^* + e^- + C.E.$ (29 keV)

Constraints on solar luminosity, solar metallicity, solar core temperature, onset of matter effects in *v* oscillations, etc. $E_v - 172 \text{ keV}$

100 ton-year

Species	E range (keV)	Ν	1/√N
рр	29 - 278	6170	1.3%
⁷ Be	665 - 775	1850	2.3%
pep	1230 - 1360	151	8.1%
CNO	278 - 655 785 - 1220	63	12.6%
⁸ B	(1.5 - 15) x 10 ³	209	6.9%

- High spatial resolution of DAMIC CCDs provide unique capabilities in particle ID.
- Cluster topology to identify α s, β s and NR with high efficiency.
- Constraints on the activities of the ³²Si, ²³⁸U and ²³²Th decay chains by coincidence analysis.
- Possible significant improvement in NR by spatial coincidence analysis with lattice defects.
- Particle ID capabilities can be extended to hybrid aSe/CMOS devices proposed for the Selena experiment.
- Selena may be able to perform background-free $\beta\beta$ decay and solar *v* spectroscopy in 100 ton-year exposure.