Krypton Removal via Gas Chromatography for LZ

Drew Ames, on behalf of the LZ collaboration

LRT 2022

The LUX-Zeplin (LZ) Detector

- Located at Sanford Underground Research Facility in Lead, SD
- Dual-phase xenon time projection chamber with 7 tonne active volume (10 tonnes total xenon)
- Energy depositions in the TPC result in light (S1) and charge (S2) signals
 - 3D position reconstruction using PMTs (x-y) and drift time (z)
 - Discriminate nuclear vs electron recoils with S1/S2 ratio
- Outer detector system

 (Gd-loaded liquid scintillator +
 instrumented xenon skin) for
 rejection of external backgrounds

Backgrounds in LZ

Simulated LZ background data for 1000 live days Blue: ER band, Red: NR band

(Projected WIMP sensitivity of the LUX-ZEPLIN (LZ) dark matter experiment, https://arxiv.org/pdf/1802.06039.pdf)

Background contributions for 1000 live days

Source	Nuclear recoils	Electron recoils
Detector components	0.07	9
Xenon contaminants	0	819
Laboratory and cosmogenics	0.06	5
Surface contaminants	0.39	40
Physics (neutrinos, ¹³⁶ Xe $2v\beta\beta$)	0.51	258
Total (before ER discrimination & NR efficiency)	1.03	1195

	Isotope	ER cts	
Xenon	²²² Rn (1.8 µBq/kg)	681	
contaminants: radioactive	²²⁰ Rn (0.09 µBq/kg)	111	
nobles	^{nat} Kr (0.015 ppt g/g)	24.5	
	^{nat} Ar (0.45 ppb g/g)	2.5	

Krypton-85 ER backgrounds

ER background spectra in the fiducial volume for single scatter events (no cuts)

- Krypton naturally occurs in atmosphere at about 1 part per million (ppm, 10⁻⁶) by volume
- About 1 part in 10^{-11 nat}Kr is beta emitter ⁸⁵Kr
- Xenon extracted from the atmosphere contains trace krypton
 - Commercial research grade xenon contains about 1,000 - 10,000 parts per trillion (ppt = 10⁻¹²) ^{nat}Kr (by mass)
- LZ goal: ⁸⁵Kr beta decay background comparable to irreducible solar neutrino background
- Requires purity of less than 0.3 parts per trillion (3x10⁻¹³) g/g^{nat}Kr in Xe

Gas Charcoal Chromatography

- **Chromatography**: separation of a mixture based on differing transit times through a stationary medium (charcoal)
- Xenon & krypton atoms adsorb onto charcoal due to van der Waals forces caused by random fluctuations in polarization
- Xenon is more polarizable \rightarrow longer transit time
- Helium carrier gas maintains flow through column
- We use this technique to separate krypton from xenon at SLAC before transporting xenon to **SURF**

Krypton removal system overview

Chromatography Recoverv 1. **Chromatography:** Storage loop loop Xe gas injected into Compressor column; Kr separated and discarded Cold krypton Freezer trap 2. **Recovery:** Purified Charcoal Xenon xenon column Purified Xe transferred w/ trace krypton to freezer Circulation Vacuum pump pump 3. Storage: Xe compressed into cylinders for transport

Expanded system diagram

- 2 charcoal columns → parallel processing: One column in chromatography phase, one in recovery
- Multiple Kr traps
- Connections to sampling system at recovery pump and storage line

Chromatography loop

Charcoal columns Total cycle duration: ~3 hours Charcoal mass: ~500 kg/column

- 1. ~16 kg xenon is fed into the column
- 2. Helium is circulated through the column as a carrier gas
 - ~600 1200 SLPM helium flow, adjusted based on ambient temperature to maintain 3h chromatography duration
 - Column pressure is maintained at 1.4 bar
- 3. A cold trap captures the krypton as it exits the column
- 4. When the first xenon is detected emerging from the column, circulation is stopped.

Detecting the end of chromatography

The composition of the gas exiting the column is monitored by 2 devices:

Residual Gas Analyzer (RGA)

- Mass spectrometer
- Sensitive to multiple gases
- Noisy, requires change detection algorithm

Binary Gas Analyzer (BGA)

- Uses sound speed to analyze mixtures of 2
 - gases
- Much lower noise

Recovering purified xenon

- Column is pumped down from ~1.4 bar to 10 mbar most efficient pressure for recovery due to high volume flow
- 2. Helium circulates in recovery loop; vacuum pump maintains column at 10 mbar, freezer at 800 - 1000 mbar
- 3. Recovered xenon freezes onto the collection plates of the freezer
- 4. Recovery ends when xenon content of gas at the column outlet falls below threshold

Cycle duration: 2.5-3h Freezer capacity: ~200 kg (~12 recovery cycles)

3 stage vacuum pump maintains columns at 10 mbar

LN lines (copper) run through collection plates (aluminum) in the freezer interior

Helium reduction

- When freezer is at capacity, helium must be pumped out prior to storing the xenon
- He can damage PMTs -- require < 200
 ppb for LZ PMT lifetime
- Pumping on Xe ice for hours leaves
 O(1ppm) residual helium
- Solution: liquefy the xenon to release entrained helium, then refreeze and pump it away
- Result: O(10 ppb) He
- Requires precise temperature and pressure control to avoid overpressure of freezer

Storage

After helium pumpout process, xenon is warmed and compressed into cylinders for transport

Xe storage pack

Storage compressor

Distillation during storage: the first xenon out of the freezer consistently had the highest krypton concentration

We used this to selectively reprocess the "dirtiest" xenon by segregating the first ~50 kg of a batch

Sampling System

Measurement technique produces ~ 10^9 gain in sensitivity to krypton

- Xenon samples (100g) are taken from recovery loop or storage bottles
- Pass through LN temperature cold trap
- Xenon vapor is enriched with impurities
- RGA monitors cold trap output
 - Off the shelf has ~1 ppm (10⁻⁶) sensitivity
 - This technique: sensitive to tens of ppq, 10⁻¹⁵

Automated processing

- Fully automated xenon feed, chromatography and recovery cycles
- Runs without human intervention for a full freezer batch (~200 kg, 3-4 days), swapping between chromatography and recovery cycles every 3 hours
- Automatically prepares freezer for storage once capacity is reached, including warmup and refreeze to release helium
- Storage (operation of the compressor) was the only process that required human control during normal operations

Kr removal system PLC

Automated processing

Built on a combination of PLC (programmable logic controller) routines and slow control scripting:

PLC

- Low level controls (operation of valves, instruments, sensor readout)
- Reliable handled all interlocks related to xenon and equipment safety
- Individual, discrete operations (e.g. xenon feed, chromatography & recovery circulation, transitions between states) are handled by PLC routines

Slow control

- Human interface to PLC, view long term trends in sensor data
- Python scripting in Ignition (slow control software) coordinates PLC routines for longer-term operation
- Alarms alert operators to sensors deviating from normal ranges

Ignition run control infrastructure

Run control

- Coordinates parallel operations in both columns
- Interface with automation of sampling system for automatic sample taking and processing
- Tracks location and status of each "slug" of Xe; monitors freezer contents
- Triggers preparation for storage when freezer capacity is reached

State-based alarms

- Dynamic alarm levels based on current system status - extends Ignition's "static" alarm capabilities
- Customizable delays to avoid tripping on transients at the beginning of an operation

Run	Status	Flow r	Slug	Sniffs	Bypass]
113.02	Chromatography in progress	500	12	0		
113.03	Ready	500	12	0		
113.04	Ready	500	12	0		
113.05	Ready	500	12	0		
113.06	Ready	500	12	0		
113.07	Ready	500	12	0		1
Add Ru	n Remove Selected			P	'ost-run: ☑ Shut down	BIX
Add Ru Edit stat	n Remove Selected	feed	• S	P E E	' ost-run: ☑ Shut down □ Begin freez	RIX zer pumpo
Add Ru Edit stat	n Remove Selected us of selected runs: Chr post	-feed	T S	P et ['ost-run: ☑ Shut down ☐ Begin freez ☐ Warm KT1	RIX zer pumpc

Tag Path	State	Low SP	High SP	Delay (s)	Enabled?	Tree Search
[IR2KR]Kr Removal Production/Misc/BGA9622/Value	CHR2	-10	18	1,800	2	
[IR2KR]Kr Removal Production/Misc/BGA9622/Value	CHR1	-10	18	1.800	2	🕂 🔍 Kr Removal Production
[IR2KR]Kr Removal Production/Thermometers/TT9220/Temperature Read/Value	CHR2	-200	0	0		Sampling Mixing Sampling System Scripts
[IR2KR]Kr Removal Production/Thermometers/TT9220/Temperature Read/Value	CHR1	-200	0	0		+- System Tags +- Tags purgatory
[IR2KR]Kr Removal Production/Misc/XT1 DP	REC2	-100	250	30	2	
[IR2KR]Kr Removal Production/Misc/XT1 DP	REC1	-100	250	30	2	
[IR2KR]Kr Removal Production/Misc/Freezer Out DP	REC1	-100	250	0	2	
[IR2KR]Kr Removal Production/Misc/Freezer Out DP	REC2	-100	250	0	2	
[IR2KR]Scripts/UGAchannel/ErrorFlag	REC2	-1	0.5	0	2	
[IR2KR]Scripts/UGAchannel/ErrorFlag	REC1	-1	0.5	0	1	
[IR2KR]Scripts/UGAchannel/ErrorFlag	CHR2	-1	0.5	0	2	
[IR2KR]Scripts/UGAchannel/ErrorFlag	CHR1	-1	0.5	0	2	
[IR2KR]Kr Removal Production/Misc/UGA Capillary Changer/Channel read/Value	CHR1	15	17	5,400	Ø	
[IR2KR]Kr Removal Production/Misc/UGA Capillary Changer/Channel read/Value	CHR2	15	17	5,400	Ø	
[IR2KR]Scripts/ChrXeDetect/Active	CHR2	0.5	2	4,000	2	
[IR2KR]Kr Removal Production/Valves/PV9621/Valve Out Read/Value	CHR2	0.5	2	10,000	Z	
[IR2KR]Kr Removal Production/Valves/PV9621/Valve Out Read/Value	CHR1	0.5	2	10,000	Ø	
[IR2KR]Scripts/ChrXeDetect/Active	CHR1	0.5	2	4,000	2	State Col 2 REC
[IR2KR]Kr Removal Production/Misc/DVR-Freezer DP	REC1	-1	250	2,700		
[IR2KR]Kr Removal Production/Misc/DVR-Freezer DP	REC2	-1	250	2,700	2	Add Alarm Remove Sele
[IR2KR]Kr Removal Production/Misc/Leybold DVR/P11-B Current /Value	REC2	10	28	2,700	R	Exact CEV [import CE
[IR2KR]Kr Removal Production/Misc/Leybold DVR/P11-B	REC1	10	28	2.700	M	- Export Cav Import C.

Results

10,379 kg total delivered to SURF Recall: <0.3 ppt g/g required Final (mass averaged) purity measured at SLAC:

Purity measured after condensing into LZ:

Purified Xe underground at SURF

Results

10,379 kg total delivered to SURF Recall: <0.3 ppt g/g required Final (mass averaged) purity measured at SLAC:

0.12 ppt

Purity measured after condensing into LZ:

Purified Xe underground at SURF

Results

10,379 kg total delivered to SURF Recall: <0.3 ppt g/g required Final (mass averaged) purity measured at SLAC:

0.12 ppt

Purity measured after condensing into LZ:

0.10 ppt 🔰

Purified Xe underground at SURF

Conclusions

- To meet requirements on ER backgrounds, LZ needs xenon with <0.3 ppt (3x10⁻¹⁰) g/g^{nat}Kr
- Kr removal system at SLAC employed gas charcoal chromatography to purify 10 tonne LZ xenon payload
- Fully automated chromatography and recovery allowed operation for multiple days without human intervention
- 10.3 tonnes of xenon delivered at an ultimate purity of 0.12 ppt, confirmed by in-situ measurements after filling detector

LZ (LUX-ZEPLIN) Collaboration

35 Institutions: 250 scientists, engineers, and technical staff

F O Sector

https://lz.lbl.gov/

- Black Hills State University
- Brandeis University
- Brookhaven National Laboratory
- Brown University
- Center for Underground Physics
- Edinburgh University
- Fermi National Accelerator Lab.
- Imperial College London
- Lawrence Berkeley National Lab.
- Lawrence Livermore National Lab.
- LIP Coimbra
- Northwestern University
- Pennsylvania State University
- Royal Holloway University of London
- SLAC National Accelerator Lab.
- South Dakota School of Mines & Tech
- South Dakota Science & Technology Authority
- STFC Rutherford Appleton Lab.
- Texas A&M University
- University of Albany, SUNY
- University of Alabama
- University of Bristol
- University College London
- University of California Berkeley
- University of California Davis
- University of California Los Angeles
- University of California Santa Barbara
- University of Liverpool
- University of Maryland
- University of Massachusetts, Amherst
- University of Michigan
- University of Oxford
- University of Rochester
- University of Sheffield
- University of Wisconsin, Madison
- US UK Portugal Korea

Thanks to our sponsors and participating institutions!

00

 \bigcap

January 2021 Collaboration Meeting

Effect on sensitivity of increasing Rn activity

