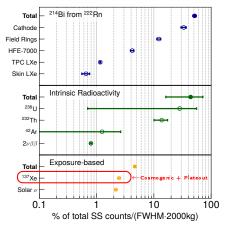
Radon daughter plateout background in nEXO – a simulation study

Raymond Tsang, Venkatesh Veeraraghavan, and Andreas Piepke University of Alabama

on behalf of

June 15, 2022

LRT 2022, SDSMT


Raymond Tsang (UAlabama)

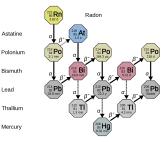
nEXO Rn daughter plateout

nEXO backgrounds

- nEXO searches for 0νββ of ¹³⁶Xe in a LXeTPC.
- Background sources:
 - Radon outgassing
 - Intrinsic radioactivity
 - Exposure-based background
 - Cosmogenics
 - Dust
 - Radon daughter plateout
- Not a major background, but still on our radar.

nEXO Background

nEXO Collaboration, J. Phys. G: Nucl. Part. Phys. 49, 015104 (2022)


Rn daughter plateout mechanism

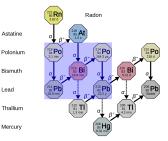
Creation of ²¹⁰Po:

- Rn daughters plate out on surfaces
- Decay to ²¹⁰Pb during assembly
- ²¹⁰Pb decays to ²¹⁰Bi then ²¹⁰Po during operation

Background due to ²¹⁰ Po:

- Emission of 5.304 MeV α by ²¹⁰Po
- (α, n) reaction in low-Z materials (Z < 14).
- Neutron capture on 136 Xe and scattering \implies background (smaller)
- ¹³⁷Xe β decays (Q = 4.173 MeV, $\tau_{1/2} = 3.8$ mins) \implies background

Lead


Rn daughter plateout mechanism

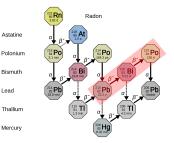
Creation of ²¹⁰Po:

- Rn daughters plate out on surfaces
- Decay to ²¹⁰Pb during assembly
- ²¹⁰Pb decays to ²¹⁰Bi then ²¹⁰Po during operation

Background due to ²¹⁰ Po:

- Emission of 5.304 MeV α by ²¹⁰Po
- (α, n) reaction in low-Z materials (Z < 14).
- Neutron capture on 136 Xe and scattering \implies background (smaller)
- ¹³⁷Xe β decays (Q = 4.173 MeV, $\tau_{1/2} = 3.8$ mins) \implies background

Lead


Rn daughter plateout mechanism

Creation of ²¹⁰Po:

- Rn daughters plate out on surfaces
- Decay to ²¹⁰Pb during assembly
- ²¹⁰Pb decays to ²¹⁰Bi then ²¹⁰Po during operation

Background due to ²¹⁰ Po:

- Emission of 5.304 MeV α by ²¹⁰Po
- (α, n) reaction in low-Z materials (Z < 14).
- Neutron capture on 136 Xe and scattering \implies background (smaller)
- ¹³⁷Xe β decays (Q = 4.173 MeV, $\tau_{1/2} = 3.8$ mins) \implies background

Lead

Background rate calculation

The background rate due to 210 Po, B_{210Po} , can be calculated as:

$$B_{210Po} = A_{210Po} \cdot Y_n \cdot \varepsilon_n \cdot \varepsilon_{distrib}$$

where

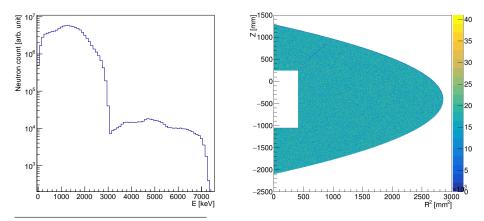
- A_{210Po}: ²¹⁰Po activity
- Y_n: Neutron yield
- ε_n : Hit efficiency for neutrons
- $\varepsilon_{distrib}$.: 1 if in bulk matter, $\frac{1}{2}$ for surfaces.

Focus of the talk:

- Determination of Y_n and ε_n .
- Allowed amounts of ²¹⁰ Po for nEXO.

Determining the neutron yields Y_n

• SOURCES-4C with some modifications:


Comparison of neutron yield and mean energy between original and modified SOURCES-4C.

- Newer (α, n) cross-section data from JENDL-2005/AN and TENDL 2009.
- Energy range extended from 6.5 MeV to 15 MeV to accommodate higher-energy α's from ²¹⁸Po and ²¹⁴Po.
- Verified with numerical calculation using stopping power from the NIST ASTAR online database.

Nuclide	$\frac{Y_n^{mod}}{Y_n^{orig}}$	$rac{\langle E_n^{mod} angle}{\langle E_n^{orig} angle}$
¹³ C	1.05	1.01
¹⁷ O	0.98	1.002
¹⁸ O	1.01	1.001
¹⁹ F	0.97	0.99
²⁷ Al	1.23	1.007
²⁹ Si	0.63	0.935
³⁰ Si	0.58	1.32

Simulation result

Distributions of neutrons from (α, n) in HFE^{*} in which the TPC is submerged.

*HFE-7000, a cryogen by 3M with chemical formula $C_3F_7OCH_3$.

nEXO Rn daughter plateout

Calculated neutron yields

Plateout loca	tion	(0	a, n) target	Y _n
Component	Material	Component	Nuclides	$[10^{-8}]$
TPC vesse	Cu	HFE	¹³ C, ¹⁷ O, ¹⁸ O, ¹⁹ F	511
HFE	HFE	itself	¹³ C, ¹⁷ O, ¹⁸ O, ¹⁹ F	511
Inner vessel liner	Ti	HFE	¹³ C, ¹⁷ O, ¹⁸ O, ¹⁹ F	511
Field cage spacers	Sapphire	itself	¹⁷ O, ¹⁸ O, ²⁷ Al	33.2
SiPM	Si	itself	²⁹ Si, ³⁰ Si	7.3
Charge tile backing	Quartz	itself	¹⁷ O, ¹⁸ O, ²⁹ Si, ³⁰ Si	6.7
Interposer	Quartz	itself	¹⁷ O, ¹⁸ O, ²⁹ Si, ³⁰ Si	6.7

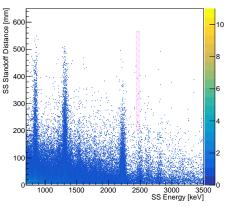
• The neutron energy spectrum and their location of creation are used for the next step – the calculation of ε_n .

Determining the hit efficiencies of neutrons ε_n

• GEANT4-based nEX0_MC with modifications:

- "Shielding" physics list for high-precision low-energy hadronic interactions.
- Disabled radioactive decays in order to separate backgrounds due to ¹³⁷Xe decays from everything that happens before, such as inelastic scattering of neutrons.
- Neutron hit efficiency can be split into two terms:

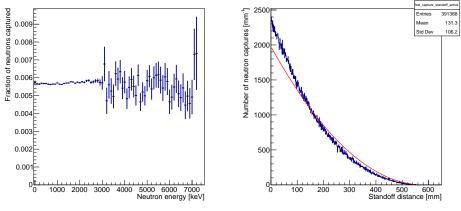
$$\varepsilon_n = \varepsilon_{prompt} + \varepsilon_{n \to 137} \chi_e \cdot \varepsilon_{137} \chi_e$$


where

- ε_{prompt}: Hit efficiency for prompt effects of neutrons
- $\varepsilon_{n \to 137Xe}$: Probability for neutron capture anywhere in the active volume.
- ε_{137Xe} : Hit efficiency for β decay of ^{137}Xe

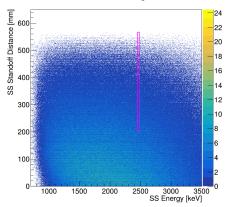
Neutron prompt effects

- "Prompt effects" include:
 - Neutron inelastic scattering on Xe, e.g. ¹³⁶Xe(n,n'γ)¹³⁶Xe, ¹³⁴Xe(n,n'γ)¹³⁴Xe.
 - Prompt gammas from neutron captures on nuclides, such as 2.2 MeV γ's from ¹H.
- Small background impact compared to ¹³⁷Xe.



Captures on ¹³⁶Xe of neutrons created in HFE

Neutron capture probability


Uniformity of neutron captures

The red line shows a uniform standoff distribution.

Hit efficiency of $^{137}{\rm Xe}\;\beta$ decays

- Since ¹³⁷Xe decays are localized, the positional distribution of ¹³⁷Xe decays should follow that of the neutron captures.
- Therefore, the distribution of 137 Xe β decays is assumed to be uniform.
 - The hit efficiency of ¹³⁷Xe depends very weakly on position for decays within the field cage.
 - Outside the field cage, the hit efficiency of ¹³⁷Xe decays is substantially lower.
- The bias introduced by this assumption is expected to be small.

Xe137, ActiveRegion

Results

Po210, HFE_Bu	ılk	Po2	10, TPCVessel_HF	E_Skin	Po210, InnerCryo_Bulk
600 100 100 100 100 100 100 100	5 3000 3500	10 10 10 10 10 10 10 10	1500 2000 2500 S S Smar	= 40 = 40 = 30 = 20 = 20 = 20 = 10 = 10 = 10 = 10 = 10 = 10 = 0 = 0	3 -2.5 -2 -1.5 -1 -0.5
Component	Yn	εn	Area/Mass	Bkg. impact	Allowed ²¹⁰ Po activity †
	[10 ⁻⁸]	$[10^{-4}]$	$[m^{2}]$	[(c/y)/(Bq/m ²)]	[Bq/m ²]
TPC Vesse	511	1.9	7.84	0.12	0.0047
SiPMs	7.3	2.1	11.43	2.8×10^{-3}	0.20
Interp oser	6.7	2.0	11.43	$2.4 imes 10^{-3}$	0.22
Field cage spacers	33.2	2.1	0.5	5.5×10^{-4}	1.0
Charge tile backing	6.7	1.7	2.54	4.6×10^{-4}	1.1
IV liner	511	7.2×10^{-4}	40.72	$2.4 imes 10^{-4}$	2.4
	[10 ⁻⁸]	[10-4]	[kg]	[(c/y)/(Bq/kg)]	[µBq/kg]
HFE	511	0.2	31814	103	58

 $\dagger_{\rm HFE}$ is allocated 6.25 \times 10^{-3} of the total background, the rest 6.25 \times 10^{-4} each.

Raymond Tsang (UAlabama)

nEXO Rn daughter plateout

Conclusion

Summary

- We have estimated the background impact of radon daughter plateout to nEXO.
- Based on the estimates, we have allocated background budgets to the components that are more susceptible to this background.
- While it is not expected to be a major background source, we need to devise ways to measure ²¹⁰Po contamination on surfaces and in bulk volumes.

More presentations related to this topic:

- Dmitry Chernyak, Radon daughter plate-out as a background source in nEXO experiment.
- Isaac Arnquist, Exploration of Methods to Remove Implanted Pb-210 and Po-210 Contamination from Silicon Surfaces

Talks and posters by nEXO collaborators

- Dmitry Chernyak, Radon daughter plate-out as a background source in nEXO experiment
- Isaac Arnquist, Exploration of Methods to Remove Implanted Pb-210 and Po-210 Contamination from Silicon Surfaces
- Venkatesh Veeraraghavan, ⁴²Ar background in nEXO
- Brian Mong, Improving nEXO Sensitivity with Radon Distillation
- Khadouja Harouaka, Sample preparation strategies for ultra-trace assay of actinides in difficult samples matrices
- Amanda French, Use of QQQ-ICP-MS for Ultra Low Background Measurements
- Andreas Piepke, The nEXO Background Control Program
- Douglas Leonard, Facilities and Recent Developments for Radioactivity Assay at CUP
- Richard Saldanha, Ultra-low background flexible cables
- Eric Hoppe, Update on Electroforming Plans and Facilities

Raymond Tsang (UAlabama)

nEXO Rn daughter plateout

June 15, 2022 15 / 15

Backups

Backups

SOURCE-4C checks

Neutron yield:

$$Y_n(E_\alpha) = \frac{N_A}{M_T} \cdot \int_0^{E_\alpha} \frac{\sigma(E)}{P_m(E)} \ dE$$

where E_{α} is the initial alpha energy, N_A is the Avogadro's number, M_T is the molar mass of the target material, $\sigma(E)$ is the (α, n) cross-section, and $P_m(E)$ is the stopping power per unit density.

Comparison between original and modified SOURCES-4C with numerical calculation.

Target	Y_n for 210 Po $lpha$'s [10 $^{-6}$]			
material	Orig.	Mod.	Num.	
HFE [‡]	5.3	5.1	4.3	
Sapphire	0.28	0.33	0.31	
SiPM	0.12	0.073	0.074	