Low background study for AMoRE through material screening facility at Y2L and Yemilab

Low Radioactivity Techniques 2022

Gowoon Kim (CUP, IBS) On behalf of the AMoRE Collaboration

AMoRE experiment

	Pilot	AMoRE-I	AMoRE-II
100 MO Q-value (3034 keV) Natural abundance (9.7%) Enriched up to 96%			
Crystal	⁴⁰ Ca ¹⁰⁰ MoO ₄	(⁴⁰ Ca,Li ₂) ¹⁰⁰ MoO ₄	Li ₂ ¹⁰⁰ MoO ₄
Crystal Mass (kg)	1.9	6.2	~180
Background Goal (ckky)	0.37	<10-2	<10 ⁻⁵
T _{1/2} (year)	3.4x10 ²³	7.0x10 ²⁴	8.0x10 ²⁶
M _{ββ} (meV)	1200-2100 ^[1]	140-270	13-23
Schedule	2016-2018	2020-2022	2023-2027

[AMoRE Experiment]

- The AMoRE is an experiment to search for $0\nu\beta\beta$ decay of ¹⁰⁰Mo using molybdate scintillation crystals.
- The 1st phase, AMoRE-I, using about 6 kg of crystals is ongoing in Y2L (Yangyang underground laboratory).
- The 2nd phase, AMoRE-II, will be operating at the Yemilab, which is a new underground laboratory of CUP, using about 180 kg of LMO crystals.

Sensitivity for AMoRE-II

- Discovery sensitivities depend on background and exposure
- AMoRE-II time schedule: 2023~2027 (5 years)
- Background requirement: ~10⁻⁴ ckky / goal : ~10⁻⁵ ckky

Discovery sensitivity with a significance of at least 3 sigma (99.7%).

Underground Laboratories of CUP

	Y2L (2003~)	Yemilab (2022~)
Location	Yangyang	Jeongseon
Depth (m)	700	1000
Area (m ²)	350	~3000
Rock Radioactivity (ppm)	U: 3.9(14) Th: 10.5(65) K: 40000	U: 0.8(3) Th: 3.3(4) K: 11800
Experiments	AMoRE-I COSINE-100	AMoRE-II COSINE-200 IsoDAR(?)

[Location of Y2L & Yemilab]

Yemilab^[2]

- Location: underground tunnel next to the Handuk iron mine at Jeongseon, Gangwon-do, South Korea.
- Access tunnel: 782 m long with 12% downslope
- Man cage: 587 m vertical moving, 2.5 min to the underground, 1.5 ton payload, maximum 5 persons allowed at once

Yemilab construction

changing room

Radon Reduction System (RRS) for AMoRE Hall

- target level : ~20 mBq/m³
- supply capacity : 50 m³/h
- No PCW requirement
- Humidity < 2000 ppm

AMoRE-II shielding system

[inner]

[outer]

1cm Boric acid rubber \rightarrow 2cm Copper \rightarrow 25cm Lead \rightarrow 1cm Boric acid rubber \rightarrow polyethylene

Crystal & Detector module for AMoRE-II

- 1st stage of AMoRE-II : 90 crystals (~27 kg), will be started in 2023
- 2nd stage of AMoRE-II : ~600 crystals (~180 kg)

Material screening facilities^[3]

- Facilities
 - 2 single HPGe detectors (CC1, CC2) at Y2L
 - An array of 14 HPGe detectors (CAGe) at Y2L
 - An ionization alpha counter at Y2L
 - ICP-MS (Inductively Coupled Plasma-Mass Spectrometry) at IBS HQ (Deajeon)
- Cross check between different methods

HPGe detectors: single detectors^[4]

CC1 (2010~)

- Relative efficiency: 100%
- Dedicated shielding system
 - Top & bottom: Pb 10cm + Cu 10cm
 - side: Pb15cm + Cu 10cm
 - innermost: Ukraine Ancient Pb 5cm
- Background count rate (50~4000 keV)

Year	2015	2018	2019	2020	2021
Rate (mHz)	8.1	7.9	7.8	7.9	8.0

	Pb Goslar Ph	
	Gosiai i b	
	Cu	
L		

CC2 (2016~)

- Relative efficiency: 100%
- Dedicated shielding system

- Cu 10cm + Goslar Pb 10cm + Pb 10cm

• Background count rate (50~4000 keV)

Year	2017	2018	2019	2020	2021
Rate (mHz)	9.5	7.9	6.8	6.2	6.1

HPGe detectors: CAGe^[5-7]

- CAGe (CUP Array of Germanium) is an array of 14 HPGe detectors for high sensitivity measurement
- Location: Y2L
- Relative efficiency: 70% each
- Shielding system: 5cm Cu + 5cm Goslar Pb + 10cm Pb
- Background rate (2021)
 - single hit : 90.4 \pm 0.3 [event/kg/day]
 - double hit : 5.74 ± 0.07 [event/kg/day]

[CAGe]

HPGe detectors: CAGe

- Low background material screening: materials for AMoRE construction (lead, copper, etc), MoO₃ powder for crystal growing
- Rare event physics research: $2\nu\beta\beta$ decay of ¹⁰⁰Mo, decay of ^{180m}Ta, decay of ⁵⁰V

[MoO3 powder]

[lead]

Lead issue for AMoRE-II^[8]

[²¹⁴Bi High E gamma]

- We found that the low background lead from Goslar company is not available anymore at the year 2021.
- Even it is available in another company, the cost is high (about 50k\$ per ton)

E (keV)	Branching (%)	Inr 8 c
2694.66(13)	0.0300(14)	1 c
2769.92(15)	0.0245(14)	25
2785.93(15)	0.0055(5)	
2880.35(14)	0.0100(14)	
2893.59(14)	0.0059(5)	
2921.97(15)	0.0136(9)	
2940.0	0.0036(14)	
2978.94(15)	0.0136(5)	
3000.0(2)	0.0086(9)	
3053.9(2)	0.0209(23)	
3081.79(25)	0.0059(18)	
3142.6(4)	0.00123(4)	
3183.6(4)	0.00136(23)	5 c
	-	

²¹⁴Bi

- ROI of AMoRE-II : 3034 ± 10 keV
- Depending on energy resolution, 3054 keV signals can be merged. (effect is negligible with energy resolution FWHM < 5 keV)
- Required levels of ²¹⁴Bi for the lead shields : Inner part < 0.9 mBq/kg, outer part < 0.3 mBq/kg

²¹⁰Pb

- High ²¹⁰Pb activity level can make noise at ROI because of random coincidence.
- According to simulation, Bremsstrahlung level requirement is < 50 Bq/kg

Lead issue for AMoRE-II

AMoRE-II background estimation^[9]

- Lots of samples have been measured
- all components still meet our requirements
- Continued for future experiments

15

Simulation study for background level of AMoRE-II^[10]

Summary

- The AMoRE is an experiment to search for 0vββ decay of ¹⁰⁰Mo using low-temperature molybdate-based scintillation bolometers. AMoRE-I uses about 6 kg of molybdate crystals is ongoing in Y2L. The large scale AMoRE-II experiment, will be operating at the Yemilab using about 180 kg of crystals.
- Two single HPGe detectors, CAGe, an alpha counter, and an ICP-MS are operating to measure radioactivity for low background study. Most of the AMoRE-II materials are crosschecked by different methods (alpha-, gamma-spectrometry, and ICM-MS).
- Background level requirement for AMoRE-II is ~10⁻⁴ ckky, and all the analysed components are meet our requirements. More material screening and simulation studies will be continue.

[Ref]
[1] V. Alenkov *et al.*, Eur. Phys. J. C 79 (2019) 791
[2] K.S. Park *et al.*, J. Phys.: Conf. Ser. 2156 (2022) 012171
[3] M.H. Lee, J. Phys.: Conf. Ser. 1468 (2020) 012249
[4] E.K. Lee 2022 poster @ ICRM 2022
[5] S.Y. Park *et al*, NIMA 992 (2021) 165020
[6] E. Sala *et al*, J. Phys.: Conf. Ser. 718 (2016) 062050
[7] D.S. Leonard *et al.*, NIMA 989 (2021) 164954
[8] S.Y. Park presentation @ 2022 KPS spring meeting
[9] J.H. So, presentation @ The 7th Symposium on Neutrinos and Dark Matter in Nuclear Physics (2022)
[10] J.W. Seo, poster @ NEUTRINO 2022

BACK UP

HPGe detectors: single detectors CC1

CC2

Ονββ decay & Experiments

Candidates	Q _{ββ} (MeV)	N.A.(%)	Exp.
⁴⁸ Ca→ ⁴⁸ Ti	4.268	0.187	
⁷⁶ Ge→ ⁷⁶ Se	2.039	7.8	MAJORANA, GERDA/LEGEAND
⁸² Se→ ⁸² Kr	2.998	8.8	CUPID-0
⁹⁶ Zr→ ⁹⁶ Mo	3.356	2.8	
¹⁰⁰ Mo→ ¹⁰⁰ Ru	3.034	9.7	AMoRE CUPID-Mo, CUPID
¹¹⁰ Pd→ ¹¹⁰ Cd	2.017	11.7	
¹¹⁶ Cd→ ¹¹⁶ Sn	2.813	7.5	Aurora
¹²⁴ Sn→ ¹²⁴ Te	2.293	5.8	
¹³⁰ Te→ ¹³⁰ Xe	2.528	34.1	CUORE
¹³⁶ Xe→ ¹³⁶ Ba	2.458	8.9	EXO, nEXO, KamLAND-Zen
¹⁵⁰ Nd→ ¹⁵⁰ Sm	3.371	5.6	

[candidates & Exps.]

Ονββ decay

- Direct test of Majorana nature of neutrino ٠
- Lepton number violation process ٠
- Absolute neutrino mass ٠

MoO3 based Crystal scintillators

	Inter. BG	LY at 10 K (%)	Density (g/cm ³)	Melt. Point (°C)	Hygroscopic
CaMoO ₄	Higher (⁴⁸ Ca)	100	4.2	~1450	No
Li ₂ MoO ₄	Lower	5	3.0	~700	Strong
PbMoO ₄	N.A. (²¹⁰ Pb)	10	6.8	~1065	No
Na ₂ Mo ₂ O ₇	Lower	140	3.7	~600	Weak

