Supernova and Solar Neutrinos with DUNE

Dan Pershey – Duke University For the DUNE Collaboration

May 12, 2022 CoSSURF 2022 – Rapid City, SD

The Deep Underground Neutrino Experiment

40 kton (fiducial) liquid argon time projection chamber (LAr TPC)

DUNE will further constrain neutrino oscillation parameters including the CP-violating phase angle

• Measured using a high-purity $v_{\mu}/\overline{v}_{\mu}$ beam produced at Fermilab

Huge size and 4300 mwe overburden makes DUNE ideal for searching for rare astroparticle phenomena

Focus on astroparticle measurements today

Liquid argon TPC

Neutrino experiments using LAr TPC's with data:

LArIAT ArgoNeuT MicroBooNE ICARUS ProtoDUNE-SP

□ In a noble gas, ionization charge is not re-absorbed in the medium

An applied electric field drifts this charge to a planar readout

 We will build three consecutive planes of readout wires with 0.5 cm spacing, oriented on different axes for two-dimensional reconstruction

The depth in the detector is determined by the electron drift-time

Resolution is sub-cm in each dimension for an entire 10 kton module

Duke

DUNE photon detection system (PDS)

Unfortunately, A LAr TPC can not determine the interaction time, t₀

Use will implement a PDS to determine event timing from an optical flash

• Argon also has a naturally high scintillation yield, \approx 40000 photons / MeV

□ PD design uses a wave-guide read by a SiPM designed specifically for DUNE

Neutrino production in supernovae

- 1. Neutronization through electron capture in the core gives a short-lived, intense flash of v_e
- 2. Neutrino production then dominated by matter falling into the core
- Emission then slowly cools as neutrinos diffuse

DUNE expects to see several thousand events from a galactic supernova to test time/energy profiles

Supernova signals in argon

Charged current interactions on Ar sensitive only to v_e flux
v_e + ⁴⁰Ar → e⁻ + ⁴⁰K* E_v > 1.5 MeV
v_e + ⁴⁰Ar → e⁺ + ⁴⁰Cl* E_v > 7.5 MeV
Neutral current interactions on Ar
v_x + ⁴⁰Ar → v_x + ⁴⁰Ar* / v_x + ⁴⁰Ar → v_x + ⁴⁰Ar*
E_v > 1.5 MeV

Sub-cm spatial resolution allows for event-by-event categorization by interaction type NC events create a cloud of deexcitation gamma blips CC events give an electron in a deexcitation cloud ν -e scatters produce a lone electron pointing away from the supernova

Supernova events in DUNE

Precision tracking of particles in TPC

- Electron track visible in CC and ES
- Comptons from deexcitation gammas show up as small blips surrounding electron track
- Can discriminate between channels based on deexcitation gammas

Duke

DUNE triggering on a supernova

□ Trigger on an increased number of observed clusters in the TPC

Very little reconstruction, done fast online

With a selected background rate of 0.1 Hz, we can trigger on any supernova in the Milky Way with < 1 false trigger / month</p>

Supernova events at DUNE

\Box For a 10 kpc supernova, we expect \approx 4000 neutrinos in 40 kton of argon

Channel	Events "GKVM" model
$\nu_e + {}^{40} \text{Ar} \rightarrow e^- + {}^{40} \text{K}^*$	3350
$\frac{\overline{\nu}_e + ^{40} \text{Ar} \rightarrow e^+ + ^{40} \text{Cl}^*}{\overline{\nu}_e + ^{40} \text{Ar} \rightarrow e^+ + ^{40} \text{Cl}^*}$	160
$\nu_x + e^- \rightarrow \nu_x + e^-$	260
Total	3770

Most sensitive to the v_e flux Unique aspect of argon detectors!

But there are large theoretical uncertainties on the total rate Solid: Garching model¹

Would see few thousand events from galactic star or several dozen events from the LMC

Andromeda supernova would produce ≈ 1 event, lost in noise

¹Huedepol, Müller, Janka, Marek, Raffelt; PRL104 (2010) 251101

Testing astrophysical models with ν spectrum

- Energy transport models in supernovae give a wide range of predicted neutrino spectra observed by DUNE
- General "pinched thermal flux" shape is sufficient to describe flux predicted by these models

$$\phi(E_{\nu}) = \mathcal{N}\left(\frac{E_{\nu}}{\langle E_{\nu} \rangle}\right)^{\alpha} \exp\left[-\left(\alpha + 1\right) \frac{E_{\nu}}{\langle E_{\nu} \rangle}\right]$$

- DUNE can constrain the three relevant parameters
- Provides a test of these supernova transport models
- A measurement at 10 kpc would constrain current models

Supernova early detection

Directional Likelihood Surface

- Neutrinos signal arrives a few hours ahead of light signals from supernova
- DUNE (and others) can estimate where in the sky the burst originated
- Will inform astronomers where to point telescopes to observe the light signal

Multi-messenger astronomy

Simulated supernova at 10 kpc

- 260 νe scattering events
- Low- $Q^2 \rightarrow$ great pointing 3350 ν_e CC events
- Exploit angular prediction of xsec

4.5 degree pointing resolution

Solar neutrinos in DUNE

The sun produces a large flux of neutrinos which may interact in DUNE

- Dominant interaction channel is CC
- Threshold set by large background rate at several MeV
- ⁸B and hep fluxes are observable

❑ Signal leaves a ≈10 MeV electron and gamma cascade in detector

Need to trigger and identify

Triggering solar events in DUNE

Both TPC and PDS activity required to trigger a solar neutrino

- Observable electron track in TPC
- Associated gamma cascade in TPC
- Coincident activity in PDS required for vertexing and background control

Solar neutrino energy resolution

Reconstruct events calorimetrically – sum all energy deposited in electron track and gamma cascade blips

- PDS gives t₀ for electron lifetime correction and fiducialization
- We achieve 9-12% resolution on neutrino energy throughout the solar energy range

Solar neutrinos in DUNE

Solar 8B + hep flux is enormous – expect several tagged events / day / kt Backgrounds very important when studying solar neutrinos

Mostly neutron capture events affect us – only events > 9 MeV are resolvable

Solar neutrinos in DUNE

Solar 8B + hep flux is enormous – expect several tagged events / day / kt Backgrounds very important when studying solar neutrinos

Mostly neutron capture events affect us – only events > 9 MeV are resolvable

Supernova and Solar Neutrinos with DUNE

Future sensitivity to solar oscillations

□ DUNE has favorable sensitivity for measuring Δm_{21}^2 largely from day/night effect – a partial regeneration of the v_e flux due to matter effects in Earth

- \square May push current tension between SK/SNO and KamLAND to 5σ
- DUNE working to publish our own sensitivity calculation

Backup

D. Pershey

Supernova and Solar Neutrinos with DUNE

Collecting Scintillation Light with the PDS

- ARAPUCA¹ photon detectors developed to enhance light yield in DUNE by trapping photons of a certain wavelength
- PD is coated in PTP which shifts photon wavelengths to 330-400 nm
- A dichroic filter just below is transparent to photons at wavelengths below 400 nm but reflective at longer wavelengths
- Below, a second wavelength shifter adjusts the wavelength to 430 nm
- Light is thus trapped between the dichroic filter and the reflective wall until captured by a SiPM

Not to scale.

¹Marinho, Paulucci, Machado, Segreto; arXiv 1804.03764

Duke 20

Matching PDS and TPC Activity

- Both PDS and TPC hits will give information on the coordinates perpendicular to the drift direction
- Requiring a coincidence between the PDS flash and TPC positions will reduce the rate of uncorrelated background in the two systems
 - Vertex reconstruction is within 240 cm for PDS and TPC
 - The time of the PDS flash precedes TPC activity, with the time delay no more than one drift time

