Upgrading the BACoN liquid argon cryogenic system to study light

by

Nabin Poudyal, University of South Dakota. May 11, 2022

CoSSURF 2022

N. Poudyal¹, W. Xu¹, D. Fields², M. Gold², R. Massarczyk³, S. Elliott³ ¹University of South Dakota, ²University of New Mexico, ³Los Alamos National Lab

LAr scintillation and Xenon Doping Mechanism

Ionizing particle passes through LAr volume, it creates Ar⁺ ion or excites Ar^{*} atoms and form argon excimers.

S,T, M, and X states have collision quenching process which contributes to the light loss. $1/(7.7\mu s)$

 $\tau_{\rm M}$, $\tau_{\rm x}$ are inversely proportional to xenon concentration

K_q = collision de-excitation factors due to quenching

 k_x = a xenon dopant diffusion reaction rate.

LAr test-stand, BACoN, at UNM

Approximate sketch of Bacon setup

Source: Neil's Thesis

Data Acquisition and SiPM characterization setup

Led driver

Data Acquisition and SiPM characterization setup

IV-characteristic and Photo-electron Spectrum

IV plot showing the breakdown voltage and its behavior in Over Voltage region Photo-Electron spectrum and SPE resolution plot

Conclusion and Outlook

- 1. Upgrade of LAr test stand setup is about to be complete by few months.
- 2. Cryostat uses PMT, SiPM, led light and Americium gamma source for triggering and calibration.
- 3. Develop a time development of light yield with for amount of Xe doping.
- 4. Plan, finer doping below 1ppm to extract the quenching rate and absolute light yield per deposition.