Search for $0v\beta\beta$ with CUPID

Pranava Teja Surukuchi (for the CUPID collaboration)

CoSSURF 2022

May 12, 2022

Neutrinoless Double Beta Decay ($0\nu\beta\beta$)

- Hypothesized nuclear process
- If observed, it implies:
 - v has Majorana mass term
 - Lepton number violation
 - Hints to matter-antimatter asymmetry
- $0\nu\beta\beta$ experiments measure half-life (or decay rate)
- \bullet Constrain the ν mass and ordering

Nuclear Matrix elements

$$T_{1/2}^{0\nu} \alpha \left(\boldsymbol{G} |\boldsymbol{\mathcal{M}}|^2 \langle m_{\beta\beta} \rangle^2 \right)^{-1} \simeq 10^{27-28} \left(\frac{0.01 \, \text{eV}}{\langle m_{\beta\beta} \rangle} \right)^{-1}$$

Phase space factor Effective neutrino mass

Important to observe 0
uetaeta in multiple isotopes

CUORE: Cryogenic Underground Observatory for Rare Events

- Located in LNGS under the mountain of Gran Sasso
- **Primary Goal:** Search for $0\nu\beta\beta$ decay in ¹³⁰Te
- **Design:**
 - 19 towers (total of 988 TeO₂ crystals)
 - Large mass: 742 kg of TeO₂,206 kg of ¹³⁰Te
 - $Q_{\beta\beta}$ (2528 keV) above most γ natural radioactivity
 - Low backgrounds measured: 1.49x10⁻² cts/(keV.kg.yr)
 - Energy resolution: Goal of 7.8 keV FWHM at $Q_{\beta\beta}$

Pranava Teja Surukuchi, CoSSURF 2022

CUORE is the first tonne-scale bolometric $0\nu\beta\beta$ decay experiment

- $T^{0v}_{1/2} > 2.2 \times 10^{25}$ yr at 90% C.I
- Assuming light neutrino exchange: *m_{ββ}* < 90 - 305 meV
- Sensitivity (5 yr data taking): 130 Te T $^{0v}_{1/2}$ > **9.0 x 10**²⁵ yr $m_{\beta\beta} < 50 - 130 \text{ meV}$

CUORE Limits

- Below 2615 keV γ/β +a
- Above 2615 keV, primarily from αs (U/Th contamination)

Significant background reduction crucial to improve sensitivity to $0\nu\beta\beta$

Backgrounds in CUORE

- Below 2615 keV γ/β +a
- Above 2615 keV, primarily from αs (U/Th contamination)
- BI in ROI: 1.49(4)x10-2 ckky
- Bl in Alpha region: **I.40(2)xI0**⁻² ckky
- Backgrounds in ROI are dominated by alphas

Significant background reduction crucial to improve sensitivity to $0\nu\beta\beta$

Backgrounds in CUORE

Pranava Teja Surukuchi, CoSSURF 2022

CUORE Upgrade with Particle Identification

Leverage large-scale cryogenic infrastructure and long-lasting operational experience at LNGS CUORE

Build on the expertise in running bolometric experiments with particle identification

CUORE 130 Te **Bolometer**

Wright Laboratory

Pranava Teja Surukuchi, CoSSURF 2022

CUPID ¹⁰⁰ Mo **Scintillating Bolometer**

- Single detector:
- $Li_2^{100}MoO_4$ with >95% enrichment
- 45x45x45 mm; 280 g each
- Ge light detector
- Detector array:
- 57 towers (total of 1596 crystals)
- 240 kg of ¹⁰⁰Mo

Pranava Teja Surukuchi, CoSSURF 2022

CUPID Concept

- Low background targeted (10-4 cts/keV/kg/yr):
- Active α discrimination
- $Q_{\beta\beta} = 3034 \text{ keV}$ (> most γ/β backgrounds)
- Muon veto system
- Improved background rejection techniques

CUPID Concept

- Q_{ββ} (3034 keV)
 - Above most β/γ natural radioactivity
 - Low backgrounds from $2\nu\beta\beta$
- Isotope within the absorber
- Production of pure Li₂¹⁰⁰MoO₄ crystals demonstrated
- Easily scalable to larger volumes

Better

Building on CUORE

- CUORE cryostat: multiple stage cryogen-free cryostat to cool 1 ton to 10 mk
- LNGS Location: Natural shielding (3600 m.w.e) from by the mountain of Gran Sasso
- Passive shielding from rock, lead, polyethylene, and boric acid
- Careful material selection: Ancient Lead and low radioactive

Active Background Rejection: Muon Veto

- Projected muon related background ~ IxI0-4 cts/keV/kg/yr
- Modular system with plastics scintillator + WLS fibers readout by SiPMs
- Panels surrounding detector + bottom/top panels

Wright

Laboratory

• Configuration (efficiency + structural constraints) currently being optimized

Prototype Demonstrators: Precursors to CUPID

<u>CUPID-0:</u>

- Located in the CUORE-0 cryostat at LNGS, Italy
- 24 Zn⁸²Se (95% enrichment) +2 Zn^{nat}Se crystals - 5.17 kg of ⁸²Se
- Ge light detectors and NTD thermistors

Phys. Rev. Lett. **123**, 032501

Pranava Teja Surukuchi, CoSSURF 2022

CUPID Mo:

- Located in the LSM, France
- 20 enriched Li₂¹⁰⁰MoO₄ (97% enrichement) crystals
 - 2.26 kg of ¹⁰⁰Mo
- Ge light detectors and NTD thermistors

Results from CUPID-Mo

Counts/5 keV

- Final CUPID design based on several R&D tests performed that helped:
- Define crystal shape
- Define Tower structure
- Optimize light detector position
- Test the use of reflecting foil
- Optimize pile-up rejection techniques

- Ongoing R&D:
- Full CUPID baseline tower:
 - To test mechanical, thermal and vibrational characteristics
 - Testing assembly procedures
- Test quality of the crystals

Ongoing R&D: Design Validation

- Data-driven background model:
 - Based on CUORE, CUPID-0 and CUPID-Mo
 - Backgrounds from material to be used in CUPID well-understood
 - Wide space in pileup rejection possible

The path to achieve CUPID background goal is well understood and conservative

CUPID (baseline) goal

CUPID Baseline:

- Mass: 450 kg (240 Kg) of Li₂¹⁰⁰MoO₄ (Mo)
- Run time: **IO** yrs
- Energy resolution: 5 keV FWHM
- Background: **IO-4** cts/keV.kg.yr
- $m_{\beta\beta}$ discovery sensitivity: **12 20 meV (30)**

CUPID aims to cover the inverted ordering and a fraction of normal ordering 0

Pranava Teja Surukuchi, CoSSURF 2022

Sensitivity to $0\nu\beta\beta$

Conservative (Can build now) Discovery sensitivity $T_{1/2} > I \times I0^{27}$ yr (3 σ)

Extending CUPID

Conservative (Can build now) Discovery sensitivity $T_{1/2} > I \times I0^{27}$ yr (3 σ)

More R&D for further background reduction by radio purity and reduce pileup background Discovery sensitivity $T_{1/2} > 2 \times 10^{27}$ yr (3 σ)

Pranava Teja Surukuchi, CoSSURF 2022

Extending CUPID

Conservative (Can build now) Discovery sensitivity $T_{1/2} > I \times I0^{27}$ yr (3 σ)

More R&D for further background reduction by radio purity and reduce pileup background Discovery sensitivity $T_{1/2} > 2 \times 10^{27}$ yr (3 σ)

> Ultimate bolometer sensitivity: 1000 kg of ¹⁰⁰Mo Discovery sensitivity $T_{1/2} > 8 \times 10^{27}$ yr (3 σ)

Pranava Teja Surukuchi, CoSSURF 2022

Extending CUPID

In case of discovery, CUPID infrastructure, assembly procedures and analysis techniques could be used to search for $0\nu\beta\beta$ in other candidates:

- ⁸²Se
- •116Cd
- •130**Te**

Pranava Teja Surukuchi, CoSSURF 2022

Extending CUPID

- CUPID is an upcoming bolometric $0\nu\beta\beta$ experiment to explore inverted ordering
- Experiment is designed based on extensive expertise, infrastructure, and experience of past and ongoing experiments
- The collaboration has extensive experience operating tonne-scale bolometric experiment at LNGS
- Data driven background model projects that CUPID baseline goal is achievable
- Projected sensitivity $T^{0\nu}_{1/2} > 10^{27}$ yr and $m_{\beta\beta} < 12 20$ meV

