Dark Matter Direct Detection Tien-Tien Yu (University of Oregon)

Conference on Science at the Sanford Underground Research Facility (CoSSURF) May 13, 2022

Size

Tien-Tien Yu (University of Oregon)

CoSSURF – May 12, 2022

Galactic Rotation Curves

$$\frac{mv^2}{r} = \frac{GM(r)m}{r^2} \implies v = \sqrt{M(r)/r} \quad \text{Newton's 2nd Law}$$
Inside galaxy:

$$M(R) = \frac{4}{3}\pi R^3 \rho \implies v \propto R$$
Far-away from galaxy:

$$M(R) = \text{constant} \implies v \propto 1/\sqrt{R}$$

distance

Why Dark Matter? Size

Tien-Tien Yu (University of Oregon)

CoSSURF — May 12, 2022

Galactic Rotation Curves

$$\frac{mv^2}{r} = \frac{GM(r)m}{r^2} \implies v = \sqrt{M(r)/r} \quad \text{Newton's 2nd Law}$$
Inside galaxy:

$$M(R) = \frac{4}{3}\pi R^3 \rho \implies v \propto R$$
Far-away from galaxy:

$$M(R) = \text{constant} \implies v \propto 1/\sqrt{R}$$

distance

Size

Tien-Tien Yu (University of Oregon)

Bullet Cluster

X-ray: NASA/CXC/CfA/M.Markevitch et al.; Optical: NASA/STScl; Magellan/U.Arizona/D.Clowe et al.; Lensing Map: NASA/STScl; ESO WFI; Magellan/U.Arizona/D.Clowe et al.

Size

Tien-Tien Yu (University of Oregon)

CoSSURF — May 12, 2022

Large Scale Structure

Size

Tien-Tien Yu (University of Oregon)

Size

COSMIC MICROWAVE BACKGROUND

LARGE SCALE STRUCTURE

GALAXY MERGERS

Tien-Tien Yu (University of Oregon)

CoSSURF – May 12, 2022

GALACTIC ROTATION CURVES

Tien-Tien Yu (University of Oregon)

Dark Matter Candidates

Tien-Tien Yu (University of Oregon)

Dark Matter Models

PHYSICAL REVIEW D

Detectability of certain dark-matter candidates

Mark W. Goodman and Edward Witten Joseph Henry Laboratories, Princeton University, Princeton, New Jersey 08544 (Received 7 January 1985)

We consider the possibility that the neutral-current neutrino detector recently proposed by Drukier and Stodolsky could be used to detect some possible candidates for the dark matter in galactic halos. This may be feasible if the galactic halos are made of particles with coherent weak interactions and masses $1-10^6$ GeV; particles with spin-dependent interactions of typical weak strength and masses $1-10^2$ GeV; or strongly interacting particles of masses $1-10^{13}$ GeV.

VOLUME 31, NUMBER 12

15 JUNE 1985

PHYSICAL REVIEW D

Detectability of certain dark-matter candidates

Mark W. Goodman and Edward Witten Joseph Henry Laboratories, Princeton University, Princeton, New Jersey 08544 (Received 7 January 1985)

We consider the possibility that the neutral-current neutrino detector recently proposed by Drukier and Stodolsky could be used to detect some possible candidates for the dark matter in galactic halos. This may be feasible if the galactic halos are made of particles with coherent weak interactions and masses $1-10^6$ GeV; particles with spin-dependent interactions of typical weak strength and masses $1-10^2$ GeV; or strongly interacting particles of masses $1-10^{13}$ GeV.

VOLUME 31, NUMBER 12

15 JUNE 1985

PHYSICAL REVIEW D

Detectability of certain dark-matter candidates

Mark W. Goodman and Edward Witten Joseph Henry Laboratories, Princeton University, Princeton, New Jersey 08544 (Received 7 January 1985)

We consider the possibility that the neutral-current neutrino detector recently proposed by Drukier and Stodolsky could be used to detect some possible candidates for the dark matter in galactic halos. This may be feasible if the galactic halos are made of particles with coherent weak interactions and masses $1-10^6$ GeV; particles with spin-dependent interactions of typical weak strength and masses $1-10^2$ GeV; or strongly interacting particles of masses $1-10^{13}$ GeV.

VOLUME 31, NUMBER 12

15 JUNE 1985

PHYSICAL REVIEW D

Detectability of certain dark-matter candidates

Mark W. Goodman and Edward Witten Joseph Henry Laboratories, Princeton University, Princeton, New Jersey 08544 (Received 7 January 1985)

We consider the possibility that the neutral-current neutrino detector recently proposed by Drukier and Stodolsky could be used to detect some possible candidates for the dark matter in galactic halos. This may be feasible if the galactic halos are made of particles with coherent weak interactions and masses $1-10^6$ GeV; particles with spin-dependent interactions of typical weak strength and masses $1-10^2$ GeV; or strongly interacting particles of masses $1-10^{13}$ GeV.

VOLUME 31, NUMBER 12

15 JUNE 1985

PHYSICAL REVIEW D

Detectability of certain dark-matter candidates

Mark W. Goodman and Edward Witten Joseph Henry Laboratories, Princeton University, Princeton, New Jersey 08544 (Received 7 January 1985)

We consider the possibility that the neutral-current neutrino detector recently proposed by Drukier and Stodolsky could be used to detect some possible candidates for the dark matter in galactic halos. This may be feasible if the galactic halos are made of particles with coherent weak interactions and masses $1-10^6$ GeV; particles with spin-dependent interactions of typical weak strength and masses $1-10^2$ GeV; or strongly interacting particles of masses $1-10^{13}$ GeV.

VOLUME 31, NUMBER 12

15 JUNE 1985

Dark Matter Nuclear Scattering

Tien-Tien Yu (University of Oregon)

CoSSURF – May 12, 2022

11

Dark Matter Nuclear Scattering

look for this jiggle phonons photons electrons

e

CoSSURF — May 12, 2022

Tien-Tien Yu (University of Oregon)

11

Tien-Tien Yu (University of Oregon)

EXISTING BARTICLE DETECTOR COSSURF – May 12, 2022

Dark Matter Candidates

Tien-Tien Yu (University of Oregon)

Dark Matter Candidates

Tien-Tien Yu (University of Oregon)

Dark Matter Nuclear Scattering

Tien-Tien Yu (University of Oregon)

m_x [GeV]

Tien-Tien Yu (University of Oregon)

$\frac{dR}{dE_{\rm NR}} \propto \sigma_N N_T e^{-E_{\rm NR}/E_0}$

Tien-Tien Yu (University of Oregon)

$rac{dR}{dE_{ m NR}} \propto \sigma_N N_T e^{-E_{ m NR}/E_0}$ more targets is better

Tien-Tien Yu (University of Oregon)

large cross-section is better

Tien-Tien Yu (University of Oregon)

 $\frac{dR}{dE_{\rm NR}} \propto \frac{\sigma_N N_T}{\sigma_N N_T} e^{-E_{\rm NR}/E_0}$ more targets is better

large cross-section is better

Coherent Elastic Spin-Independent

 $\sigma_{\rm SI} = \sigma_n \frac{\mu^2}{\mu_m^2} \frac{[f_p Z]}{\mu_m^2}$

Tien-Tien Yu (University of Oregon)

 $\frac{dR}{dE_{\rm NR}} \propto \frac{\sigma_N N_T}{\sigma_N N_T} e^{-E_{\rm NR}/E_0}$ more targets is better

$$rac{Z+f_n(A-Z)]^2}{f_n} = \sigma_n rac{\mu^2}{\mu_n^2} A^2$$

large cross-section is better

Coherent Elastic Spin-Independent

 $\sigma_{\rm SI} = \sigma_n \frac{\mu^2}{\mu_{\rm m}^2} \frac{[f_p Z]}{[f_p Z]}$

Tien-Tien Yu (University of Oregon)

 $\frac{dR}{dE_{\rm NR}} \propto \frac{\sigma_N N_T}{\sigma_N N_T} e^{-E_{\rm NR}/E_0}$ more targets is better

$$\frac{Z+f_n(A-Z)]^2}{f_n} = \sigma_n \frac{\mu^2}{\mu_n^2} A^2$$

Heavy nuclei are better

large cross-section is better

Coherent Elastic Spin-Independent

 $\sigma_{\rm SI} = \sigma_n \frac{\mu^2}{\mu_n^2} \frac{[f_p Z]}{\mu_n^2}$

Element	Α	Experiments
Xenon	131	XMASS, XENON10/100/1T, LUX, Panda
Argon	39	DEAP-1/3600, DarkSide-50/LN
Csl	133 (Cs), 127 (I)	KIMS
Nal	22 (Na), 127 (I)	DAMA/LIBRA, ANAIS-112, COSINI
Ge	72	CDEX, SuperCDMS, CDMSlite
Si	28	SuperCDMS, DAMIC

Tien-Tien Yu (University of Oregon)

CoSSURF – May 12, 2022

$$N N_T e^{-E_{\rm NR}/E_0}$$

more targets is better

$$\frac{Z + f_n(A - Z)]^2}{f_n} \stackrel{f_p = f_n}{=} \sigma_n \frac{\mu^2}{\mu_n^2} A^2$$

Heavy nuclei are better

Coherent Elastic Spin-Independent

How do we pick a target material? $\frac{dR}{dE_{\rm NR}} \propto \sigma_N N_T e^{-r}$ $-E_{\rm NR}/E_0$ more targets is better $\sigma_{\rm SI} = \sigma_n \frac{\mu^2}{\mu_n^2} \frac{[f_p Z + f_n (A - Shengchao Li (XENONnT)]}{f_n^2} \int_{\substack{Carmen Carmona - Benites (LZ)}} \sigma_{\rm SI} = \sigma_n \frac{\mu^2}{\mu_n^2} \frac{[f_p Z + f_n (A - Shengchao Li (XENONnT)]}{f_n^2} \int_{\substack{Carmen Carmona - Benites (LZ)}} \sigma_{\rm SI} = \sigma_n \frac{\mu^2}{\mu_n^2} \frac{[f_p Z + f_n (A - Shengchao Li (XENONnT)]}{f_n^2} \int_{\substack{Carmen Carmona - Benites (LZ)}} \sigma_{\rm SI} = \sigma_n \frac{\mu^2}{\mu_n^2} \frac{[f_p Z + f_n (A - Shengchao Li (XENONnT)]}{f_n^2} \int_{\substack{Carmen Carmona - Benites (LZ)}} \sigma_{\rm SI} = \sigma_n \frac{\mu^2}{\mu_n^2} \frac{[f_p Z + f_n (A - Shengchao Li (XENONnT)]}{f_n^2} \int_{\substack{Carmen Carmona - Benites (LZ)}} \sigma_{\rm SI} = \sigma_n \frac{\mu^2}{\mu_n^2} \frac{[f_p Z + f_n (A - Shengchao Li (XENONnT)]}{f_n^2} \int_{\substack{Carmen Carmona - Benites (LZ)}} \sigma_{\rm SI} = \sigma_n \frac{\mu^2}{\mu_n^2} \frac{[f_p Z + f_n (A - Shengchao Li (XENONnT)]}{f_n^2} \int_{\substack{Carmen Carmona - Benites (LZ)}} \sigma_{\rm SI} = \sigma_n \frac{\mu^2}{\mu_n^2} \frac{[f_p Z + f_n (A - Shengchao Li (XENONnT)]}{f_n^2} \int_{\substack{Carmen Carmona - Benites (LZ)}} \sigma_{\rm SI} = \sigma_n \frac{\mu^2}{\mu_n^2} \frac{[f_p Z + f_n (A - Shengchao Li (XENONnT)]}{f_n^2} \int_{\substack{Carmen Carmona - Benites (LZ)}} \sigma_{\rm SI} = \sigma_n \frac{\mu^2}{\mu_n^2} \frac{[f_p Z + f_n (A - Shengchao Li (XENONnT)]}{f_n^2} \int_{\substack{Carmen Carmona - Benites (LZ)}} \sigma_{\rm SI} = \sigma_n \frac{\mu^2}{\mu_n^2} \frac{[f_p Z + f_n (A - Shengchao Li (XENONnT)]}{f_n^2} \int_{\substack{Carmen Carmona - Benites (LZ)}} \sigma_{\rm SI} = \sigma_n \frac{\mu^2}{\mu_n^2} \frac{[f_p Z + f_n (A - Shengchao Li (XENONnT)]}{f_n^2} \int_{\substack{Carmen Carmona - Benites (LZ)}} \sigma_{\rm SI} = \sigma_n \frac{\mu^2}{\mu_n^2} \frac{[f_p Z + f_n (A - Shengchao Li (XENONnT)]}{f_n^2} \int_{\substack{Carmen Carmen Carmona - Benites (LZ)}} \sigma_{\rm SI} = \sigma_n \frac{\mu^2}{\mu_n^2} \frac{[f_p Z + f_n (A - Shengchao Li (XENONnT)]}{f_n^2} \int_{\substack{Carmen Carmen Carm$ is better Rafal Wojaczsknski (DarkSide-20k) e better Quihong Wang (Pandax-47) Sounda Adhikari (Candax-41) Buslan podviiani (COSINE-100 + DM-100) DSic Superconder DM-100 MSlite, Stefano Di Lorenzo (CRESST) 39 33 (Cs), 22 (Na), 127 (I) 72 MIC 28

Element	
Xenon	
Argon	
Csl	1
Nal	2
Ge	
Si	

Tien-Tien Yu (University of Oregon)

Current Landscape: Spin-Independent

Tien-Tien Yu (University of Oregon)

large cross-section is better

Spin-Dependent

 $\frac{d\sigma_{\rm SD}}{d|\vec{q}|^2} = \frac{8G_F^2}{\pi v^2} [a_p \langle S_p]$

Tien-Tien Yu (University of Oregon)

 $\frac{dR}{dE_{\rm NR}} \propto \frac{\sigma_N N_T}{\sigma_N N_T} e^{-E_{\rm NR}/E_0}$ more targets is better

$$(s_{n}) + a_{n} \langle S_{n} \rangle]^{2} \frac{J+1}{J} \frac{S(|\vec{q}|)}{S(0)}$$

large cross-section is better

Spin-Dependent

 $\frac{d\sigma_{\rm SD}}{d|\vec{q}|^2} = \frac{8G_F^2}{\pi v^2} [a_p \langle S_p \rangle]$

Tien-Tien Yu (University of Oregon)

 $\frac{dR}{dE_{\rm NR}} \propto \sigma_N N_T e^{-E_{\rm NR}/E_0}$ more targets is better

$$(a_{D}) + a_{n} \langle S_{n} \rangle]^{2} \frac{J+1}{J} \frac{S(|\vec{q}|)}{S(0)}$$
need an unpaired spin

large cross-section is better

	need an unpaired spin	
Element	J	Experiment
F	1/2	PICO-2/40/60 (C3F8), DRIFT-II (CF4), PICASSO (C4F10), COUPP (CF3I)
Ge	9/2	SuperCDMS
Xe	1/2, 3/2	XENON10/100/1T, LUX, PandaX-II

Tien-Tien Yu (University of Oregon)

CoSSURF – May 12, 2022

$$N N_T e^{-E_{\rm NR}/E_0}$$

more targets is better

$$(a_{D}) + a_{n} \langle S_{n} \rangle]^{2} \frac{J+1}{J} \frac{S(|\vec{q}|)}{S(0)}$$

large cross-section is better

Spin-Dependent

 $\frac{d\sigma_{\rm SD}}{d|\vec{q}|^2} = \frac{8G_F^2}{\pi v^2} [a_p \langle S_p]$

Element	J	Experiment
protons F	1/2	PICO-2/40/60 (C3F8), DRIFT-II (CF4), PICASSO (C4F10), COUPP (CF3I)
neutrons Ge	9/2	SuperCDMS
neutrons Xe	1/2, 3/2	XENON10/100/1T, LUX, PandaX-II

Tien-Tien Yu (University of Oregon)

CoSSURF – May 12, 2022

$$N N_T e^{-E_{\rm NR}/E_0}$$

more targets is better

$$(S_{n}) + a_{n} \langle S_{n} \rangle]^{2} \frac{J+1}{J} \frac{S(|\vec{q}|)}{S(0)}$$

need an unpaired spin

Current Landscape: Spin-Dependent

no $A^2 - bounds$ are about 5-6 orders magnitude weaker than SI

Looking forward

Goals:

- increase target mass \bullet
- decrease thresholds
- improve background discrimination

New technologies:

Supercooled detectors

. . .

- Low Background DUNE-like module
- Giant gas TPCs in pressurized caverns

19
Looking forward

Goals:

- increase target mass \bullet
- decrease thresholds
- improve background discrimination

New technologies:

Supercooled detectors

. . .

- Low Background DUNE-like module
- Giant gas TPCs in pressurized caverns

19

Neutrino Fog

Directional Detection

Tien-Tien Yu (University of Oregon)

CoSSURF — May 12, 2022

Very distinct signature!

[arXiv: 1505.08061]

Requires ability to reconstruct direction of nuclear recoil

Directional Detection

- DMTPC
- DRIFT-II
- NEWAGE-03b"
- MIMAC
- CYGNO
- CYGNUS
- NEWS

Dark Matter Candidates

sub-Ge

Tien-Tien Yu (University of Oregon)

V Dark Matter		Weakly-Interacting Massive Partie (WIMPs)	
keV	MeV	GeV	TeV

sub-GeV Direct Detection

Tien-Tien Yu (University of Oregon)

sub-GeV Direct Detection

challenges for meV-GeV DM direct detection

fundamental challenge:

need enough energy transfer from DM-target interaction to create a detectable signal

Tien-Tien Yu (University of Oregon)

depends on process and detector setup

detecting sub-GeV DM in 2 easy steps

- 1. decrease energy threshold or sensitivity
- 2. increase the energy transfer

detecting sub-GeV DM in 2 easy steps

- 1. decrease energy threshold or sensitivity
- 2. increase the energy transfer

Tien-Tien Yu (University of Oregon)

CoSSURF – May 12, 2022

consider a variety of materials

detecting sub-GeV DM in 2 easy steps

- 1. decrease energy threshold or sensitivity
- 2. increase the energy transfer

consider different physical processes

Tien-Tien Yu (University of Oregon)

CoSSURF – May 12, 2022

consider a variety of materials

Tien-Tien Yu (University of Oregon)

$$\frac{\mathrm{d}\langle \sigma v \rangle}{\mathrm{d} \ln E_R} = \frac{\overline{\sigma}_e}{8\mu_{\chi e}^2} \int q \, \mathrm{d}$$

$$R = N_T \frac{\rho_{\chi}}{m_{\chi}}$$
number of target r

CoSSURF — May 12, 2022

Tien-Tien Yu (University of Oregon)

$|q|f(k,q)|^2 |F_{DM}(q)|^2 \eta(v_{min})$

M density

 $\int_{E_{R,cut}} d\ln E_R \frac{d\langle \sigma v \rangle}{d\ln E_R}$ nuclei energy threshold
s

$$\frac{\mathrm{d}\langle \sigma v \rangle}{\mathrm{d}\ln E_R} = \frac{\overline{\sigma_e}}{8\mu_{\chi e}^2} \int q \, \mathrm{d}q |f(k,q)|^2 |F_{DM}(q)|^2 \eta(v_{min})$$

$$R = N_T \frac{\rho_{\chi}}{m_{\chi}}$$
number of target r

CoSSURF – May 12, 2022

Tien-Tien Yu (University of Oregon)

particle physics

M density

 $-\int_{E_{R,cut}} d\ln E_{R} \frac{d\langle \sigma v \rangle}{d\ln E_{R}}$ nuclei energy threshold

$$\frac{\mathrm{d}\langle \sigma v \rangle}{\mathrm{d}\ln E_R} = \frac{\overline{\sigma_e}}{8\mu_{\chi e}^2} \int q \, \mathrm{d}$$

$$R = N_T \frac{\rho_{\chi}}{m_{\chi}}$$
number of target r

CoSSURF – May 12, 2022

Tien-Tien Yu (University of Oregon)

$\mathrm{d}q |f(k,q)|^2 |F_{DM}(q)|^2 \eta(v_{min})$

particle physics

M density

 $\int_{E_{R,cut}} d\ln E_R \frac{d\langle \sigma v \rangle}{d\ln E_R}$ nuclei energy threshold

$$R = N_T \frac{\rho_{\chi}}{m_{\chi}}$$

number of target nuclei per unit mass

Tien-Tien Yu (University of Oregon)

CoSSURF – May 12, 2022

particle physics

M density

 $\int_{E_{R,cut}} d\ln E_R \frac{d\langle \sigma v \rangle}{d\ln E_R}$ nuclei energy threshold

Lee-Weinberg Bound

Tien-Tien Yu (University of Oregon)

B. W. Lee and S. Weinberg, Phys. Rev. Lett. 39, 165 (1977) E.W. Kolb and K. Olive, Phys.Rev. D34 (1986) 2531

Lee-Weinberg Bound

Way out: have new light boson that mediates the interaction

Tien-Tien Yu (University of Oregon)

CoSSURF – May 12, 2022

Boehm and Fayet [hep-ph/0305261]

Pospelov et al [0711.4866]

Dark Photon

$SU(3)_C \times SU(2)_W \times U(1)_Y \times U(1)_X$

 $\mathscr{L} \supset -\frac{1}{4} F'^{\mu\nu} F'_{\mu\nu} - \frac{\epsilon}{2} F^{\mu\nu} F'_{\mu\nu} + \frac{1}{2} m_{A'} A'^{\mu} A'_{\mu}$

kinetic mixing

Tien-Tien Yu (University of Oregon)

Dark Photon

$$\mathscr{L} \supset -\frac{1}{4} F'^{\mu\nu} F'_{\mu\nu} \cdot$$

 $SU(3)_C \times SU(2)_W \times U(1)_Y \times U(1)_X$

 $-\frac{\epsilon}{2}F^{\mu\nu}F'_{\mu\nu} + \frac{1}{2}m_{A'}A'^{\mu}A'_{\mu}$

$$\frac{\mathrm{d}\langle \sigma v \rangle}{\mathrm{d}\ln E_R} = \frac{\overline{\sigma_e}}{8\mu_{\chi e}^2} \int q \, \mathrm{d}q |f(k,q)|^2 |F_{DM}(q)|^2 \eta(v_{min})$$

$$\overline{\sigma}_e = \frac{\mu_{\chi e}^2}{16\pi m_{\chi}^2 m_e^2} \overline{|\mathcal{M}_{\chi e}(q)|}_{q^2 = \alpha^2 m_e^2}^2$$

 $F_{DM}(q) \simeq \begin{cases} 1 & \text{heavy mediator} \\ \frac{\alpha m_e}{q} & \text{electric dipole moment} \\ \frac{\alpha^2 m_e^2}{2} & \text{light modiator} \end{cases}$

Tien-Tien Yu (University of Oregon)

particle physics

ight mediator

Tien-Tien Yu (University of Oregon)

Essig, Volansky, TTY Phys.Rev.D 96 (2017) 4, 043017 [1703.00910] DarkSide Collaboration Phys.Rev.Lett. 121 (2018) 11, 111303 [1802.06998]

CoSSURF – May 12, 2022

Tien-Tien Yu (University of Oregon)

Essig, Volansky, TTY Phys.Rev.D 96 (2017) 4, 043017 [1703.00910] DarkSide Collaboration Phys.Rev.Lett. 121 (2018) 11, 111303 [1802.06998]

Tien-Tien Yu (University of Oregon)

Essig, Volansky, TTY Phys.Rev.D 96 (2017) 4, 043017 [1703.00910] DarkSide Collaboration Phys.Rev.Lett. 121 (2018) 11, 111303 [1802.06998]

CoSSURF – May 12, 2022

[arXiv:2203.08297]

[arXiv:2203.08297]

Looking forward

Projections for future Si Skipper-CCD experiments

Tien-Tien Yu (University of Oregon)

Dark Matter Candidates

sub-Ge

Tien-Tien Yu (University of Oregon)

V Dark Matter		Weakly-Interacting Massive Partie (WIMPs)		
keV	MeV	GeV	TeV	

Noble Elements (TPCs, SPCs) Solid-State Charge Detectors Phonon Detectors (e.g. HeRALD) Threshold Detectors

Dark Matter Candidates

sub-Ge

Superconductors Low-Gap Materials (e.g. SPLENDOR) Noble Elements (TPCs, SPCs) Solid-State Charge Detectors Polar Materials (e.g. SPICE) Phonon Detectors (e.g. HeRALD) Superfluids Threshold Detectors Single Molecular Magnets Magnetic Bubble Chambers

Tien-Tien Yu (University of Oregon)

. . .

V Dark Matter		Weakly-Interacting Massive Partic (WIMPs)		
keV	MeV	GeV	TeV	

Outlook for sub-GeV DM direct detection

Tien-Tien Yu (University of Oregon)

CoSSURF – May 12, 2022

Tien-Tien Yu (University of Oregon)

Other Models

DM-nucleon scattering

[arXiv:2203.08297]

CoSSURF – May 12, 2022

Dark Matter Candidates

sub-Ge

Tien-Tien Yu (University of Oregon)

V Dark Matter		Weakly-Interacting Massive Partie (WIMPs)	
keV	MeV	GeV	TeV

Dark Matter Candidates

sub-Ge

Tien-Tien Yu (University of Oregon)

eV Dark Matter		Weakly-Interacting Massive Partie (WIMPs)		
keV	MeV	GeV	TeV	

Super Heavy Dark Matter

Super-Heavy Dark Matter

Tien-Tien Yu (University of Oregon)

Flux of DM $\Phi = n\bar{v} \simeq \frac{0.85}{m^2 yr} \times \left(\frac{m_{\rm pl}}{m_{\chi}}\right)$

Super-Heavy Dark Matter

Tien-Tien Yu (University of Oregon)

CoSSURF – May 12, 2022

Flux of DM $\Phi = n\bar{v} \simeq \frac{0.85}{\mathrm{m}^2 \mathrm{yr}} \times \left(\frac{m_{\mathrm{pl}}}{m_{\chi}}\right)$

Super-Heavy Dark Matter

DM-nucleon scattering

Tien-Tien Yu (University of Oregon)

CoSSURF — May 12, 2022

Summary

- There are a wide-range of DM candidates spanning many orders of magnitude in mass space
- Direct detection (and underground labs) can probe a large portion of parameter space
- Several new and upgraded experiments coming online in the next several years
- These include new technologies and techniques such as directional detection
- These experiments are sensitive to a wide-range of DM models and more!

Tien-Tien Yu (University of Oregon)

CoSSURF – May 12, 2022

