Sensitivity Study of Nucleon Decay Search at JUNO

Benda Xu (for JUNO Collaboration)

Department of Engineering Physics Center for High Energy Physics Tsinghua University

CoSSURF 2022-05-12

Benda Xu (THU-HEP)

Sensitivity Study of Nucleon Decay Search at JUNO

CoSSURF 2022-05-12 1 / 13

313 990

• • = • • = •

• Has minimal SU(5) SUSY been ruled out by SuperK 2014?

► Absence of SUSY partners at LHC *O*(1 TeV).

• Dimension-five operator with Colored Higgs exchange.

• Has minimal SU(5) SUSY been ruled out by SuperK 2014?

► Absence of SUSY partners at LHC *O*(1 TeV).

- Dimension-five operator with Colored Higgs exchange.
- Wino or Higgsino for superpartner exchange.

- Has minimal SU(5) SUSY been ruled out by SuperK 2014?
 - Absence of SUSY partners at LHC O(1 TeV).

- Dimension-five operator with Colored Higgs exchange.
- Wino or Higgsino for superpartner exchange.

- Has minimal SU(5) SUSY been ruled out by SuperK 2014?
 - Absence of SUSY partners at LHC O(1 TeV).
- \bullet squark and slepton could be much heavier (${\sim}1000\,{\rm TeV})$ than we thought.

arXiv:2202.01404

Benda Xu (THU-HEP)

- Dimension-five operator with Colored Higgs exchange.
- Wino or Higgsino for superpartner exchange.

- Has minimal SU(5) SUSY been ruled out by SuperK 2014?
 - Absence of SUSY partners at LHC O(1 TeV).
- \bullet squark and slepton could be much heavier (${\sim}1000\,\text{TeV})$ than we thought.
- $\bullet~$ SU(5) SUSY-GUT possibly at $1\times10^{35}\,\text{year}$ scale!

Signatures of K^+ : need for large liquid scintillator

• K^+ is below Cherenkov threshold in water, invisible. So is μ^+ from π^+ .

• Searching for μ^+ or $\pi^+ + 2\gamma$ alone has background.

Signatures of K^+ : need for large liquid scintillator

• K^+ is below Cherenkov threshold in water, invisible. So is μ^+ from π^+ .

- Searching for μ^+ or $\pi^+ + 2\gamma$ alone has background.
- Liquid scintillator is ideal for identifying K^+ .
 - Scintillation photons from mesons and muons with low kinetic energy.
- Investigated by Undagoitia et al. 2005 and realized by KamLAND 2015.

Benda Xu (THU-HEP)

JUNO: the large liquid scintillator to be online

-

イロト 不得下 イヨト イヨト

JUNO: the large liquid scintillator to be online

- Major target: neutrino massing ordering.
- Need unprecedented liquid-scintillator energy resolution of 3% at 1 MeV.

-

▶ ∢ ⊒

JUNO: the large liquid scintillator to be online

- Major target: neutrino massing ordering.
- Need unprecedented liquid-scintillator energy resolution of 3% at 1 MeV.

• 17612 20-inch PMTs and 25600 3-inch PMTs cover 78% of the liquid-scintillator sphere.

 \blacktriangleright 3-inch PMTs dynamic range is larger without saturation, suitable for K^+ ${\sim}0.5\,{\rm GeV}.$

Benda Xu (THU-HEP)

Sensitivity Study of Nucleon Decay Search at JUNO

315

Caveat

• μ 's form lines, time-of-flight subtraction is not perfect.

Benda Xu (THU-HEP)

Sensitivity Study of Nucleon Decay Search at JUNO

- Vertex reconstruction, subtract photon time-of-flights.
- At the residual time histogram, find the rising edge.

Caveat

• μ 's form lines, time-of-flight subtraction is not perfect.

Benda Xu (THU-HEP)

Sensitivity Study of Nucleon Decay Search at JUNO

CoSSURF 2022-05-12 5 / 13

- Vertex reconstruction, subtract photon time-of-flights.
- At the residual time histogram, find the rising edge.
- Fit with $K\text{-}\pi$, $K\text{-}\mu$ and single-peak atmospheric ν templates.

Caveat

• μ 's form lines, time-of-flight subtraction is not perfect.

Benda Xu (THU-HEP)

Sensitivity Study of Nucleon Decay Search at JUNO

CoSSURF 2022-05-12 5 / 13

- Vertex reconstruction, subtract photon time-of-flights.
- At the residual time histogram, find the rising edge.
- Fit with K- π , K- μ and single-peak atmospheric ν templates.
 - Require a minimal separation between two peaks to avoid degeneracy.

Caveat

• μ 's form lines, time-of-flight subtraction is not perfect.

Benda Xu (THU-HEP)

Sensitivity Study of Nucleon Decay Search at JUNO

CoSSURF 2022-05-12 5 / 13

- Vertex reconstruction, subtract photon time-of-flights.
- At the residual time histogram, find the rising edge.
- Fit with $K\text{-}\pi$, $K\text{-}\mu$ and single-peak atmospheric ν templates.
 - Require a minimal separation between two peaks to avoid degeneracy.
- Discriminate among hypotheses by χ^2 ratios (F-statistic).

Caveat

• μ 's form lines, time-of-flight subtraction is not perfect.

Benda Xu (THU-HEP)

Sensitivity Study of Nucleon Decay Search at JUNO

Individual peak energies

• Scatter individual peak energies on a plot.

Sensitivity Study of Nucleon Decay Search at JUNO

N 4 E

Individual peak energies

• Scatter individual peak energies on a plot.

• $K^+ \rightarrow \pi^+ + \pi^0(2\gamma)$

• $K^+ \rightarrow \mu^+ + \nu_\mu$, missing energy carried by ν_μ .

Individual peak energies

• Scatter individual peak energies on a plot.

- $K^+ \rightarrow \pi^+ + \pi^0(2\gamma)$
- $K^+ \rightarrow \mu^+ + \nu_{\mu}$, missing energy carried by ν_{μ} .
- mostly only one peak for background.

Benda Xu (THU-HEP)

Sensitivity Study of Nucleon Decay Search at JUNO

Simulation setup

Event generator

- GENIE¹3.0.2 for K^+ and atmospheric ν events.
 - Final state interaction taken into account.

Excited residual nuclei

- Customize GENIE to handle the excited states of residual nuclei.
 - Supplimented by TALYS² for ${}^{11}B^*$.

Detector response simulation

- JUNO-customized GEANT4³ for energy deposition and scintillation optics.
- K^+ and atmospheric ν are Uniformly distributed in the liquid-scintillator sphere.

Evolution of signal efficiency

Evolution of signal efficiency

• 31% efficiency for background level 0.3.

Remarks

- Compared to 44% efficiency of KamLAND 2015, larger exposure background-free search of JUNO requires cut to be more stringent.
- 65% efficiency from Undagoitia et al. 2005 for LENA mainly assumed events at the detector center.

Evolution of signal efficiency

100 Total visible energy **Fiducial volume** 80 • Michel en capture 60 •2 peak χ^2 40 • Time between 2 peaks Individual peak energies 3 5 0 2 4 background count($\times 5$ exposure) $\cdot 10^4$

 $\bullet~31\%$ efficiency for background level 0.3.

Remarks

- Compared to 44% efficiency of KamLAND 2015, larger exposure background-free search of JUNO requires cut to be more stringent.
- 65% efficiency from Undagoitia et al. 2005 for LENA mainly assumed events at the detector center.
- SuperK searches by prompt deexitation γ at 9.1%, $\pi^+\pi^0$ at 10% and mono-energetic μ with background.

Background example: quasi-elastic scattering of atmospheric ν

313 990

イロト 不得下 イヨト イヨト

Background example: quasi-elastic scattering of atmospheric ν

$$\nu_{\mu} + {}^{12}\mathrm{C} \rightarrow p + \mu^{-} + {}^{11}\mathrm{C}$$

- Prompt p peak minicing K^+ . Possible improvement:
 - p-K discrimination

ъ.

Background example: quasi-elastic scattering of atmospheric ν

$$\nu_{\mu} + {}^{12}\mathrm{C} \to p + \mu^{-} + {}^{11}\mathrm{C}$$

- Prompt p peak minicing K^+ . Possible improvement:
 - p-K discrimination
- "Delayed" μ^- peak is simultaneous as p but starting time is mis-identified. Possible improvements:
 - \blacktriangleright line-shaped energy deposition model for $\mu^-.$
 - μ^{\pm} discrimination.

- Sensitivity for 200 kton · year exposure
 - ► JUNO 20 kt for 10 years.
 - $\tau(p \rightarrow K^+ + \bar{\nu}) > 0.834 \times 10^{34}$ year at 90% C.L.
 - Background-free search: scales linearly with exposure.
- on JUNO physics and detector, Progress in Particle and Nuclear Physics 2022

⁴based on https://arxiv.org/abs/2112.06913 Benda Xu (THU-HEP) Sensitivity Study of N

Sensitivity Study of Nucleon Decay Search at JUNO

• Sensitivity for 200 kton · year exposure

- ► JUNO 20 kt for 10 years.
- $\tau(p \rightarrow K^+ + \bar{\nu}) > 0.834 \times 10^{34}$ year at 90% C.L.
- Background-free search: scales linearly with exposure.
- on JUNO physics and detector, Progress in Particle and Nuclear Physics 2022

Future developments

- \bullet Identify μ with both Michel e and line-shaped energy deposition.
- Better K- π and K- μ templates sensitive to event locations and directions.
- Deploy 20-inch PMTs, solve waveform pile-up and saturation⁴.
- Other K^+ decay modes: 3π , $e^++\nu_e$, semileptonic.

⁴based on https://arxiv.org/abs/2112.06913

Benda Xu (THU-HEP)

Sensitivity Study of Nucleon Decay Search at JUNO

- $n \rightarrow 3\nu$
- $p \rightarrow \mu^+ + \mu^- + \mu^+$

▲ロ → ▲周 → ▲目 → ▲目 → ▲目 → ●●●

On-going studies

- $p \rightarrow \mu^+ + \mu^- + \mu^+$
- and more!

Sensitivity Study of Nucleon Decay Search at JUNO

How to build a 20 kt detector: project status

- 2020-12 tunnel and cavity
- 2021-11 laboratory construction

-

How to build a 20 kt detector: project status

- 2020-12 tunnel and cavity
- 2021-11 laboratory construction
- 2022-05 assembly platform

-

How to build a 20 kt detector: project status

- 2020-12 tunnel and cavity
- 2021-11 laboratory construction
- 2022-05 assembly platform

Next key milestones

- Central detector installation
- PMT installation
- I Filling

Benda Xu (THU-HEP)

• Minimal SU(5) SUSY-GUT is still viable considering absense of superpartners at LHC.

31= 990

- Minimal SU(5) SUSY-GUT is still viable considering absense of superpartners at LHC.
- $p \to K^+ + \bar{\nu}$ is the most interesting process predicted.

- Minimal SU(5) SUSY-GUT is still viable considering absense of superpartners at LHC.
- $p \to K^+ + \bar{\nu}$ is the most interesting process predicted.
- Liquid scintillators are ideal to idenfity K^+ and measure its energy.

- Minimal SU(5) SUSY-GUT is still viable considering absense of superpartners at LHC.
- $p \to K^+ + \bar{\nu}$ is the most interesting process predicted.
- Liquid scintillators are ideal to idenfity K^+ and measure its energy.
- JUNO 10-year sensitivity is $au(p \to K^+ + \bar{\nu}) > 0.834 \times 10^{34}$ year at 90% C.L.

- Minimal SU(5) SUSY-GUT is still viable considering absense of superpartners at LHC.
- $p \to K^+ + \bar{\nu}$ is the most interesting process predicted.
- Liquid scintillators are ideal to idenfity K^+ and measure its energy.
- JUNO 10-year sensitivity is $\tau(p \to K^+ + \bar{\nu}) > 0.834 \times 10^{34}$ year at 90% C.L.
 - …at 31% efficiency.

- Minimal SU(5) SUSY-GUT is still viable considering absense of superpartners at LHC.
- $p \to K^+ + \bar{\nu}$ is the most interesting process predicted.
- Liquid scintillators are ideal to idenfity K^+ and measure its energy.
- JUNO 10-year sensitivity is $\tau(p \to K^+ + \bar{\nu}) >$ 0.834 \times 10 34 year at 90% C.L.
 - ...at 31% efficiency.
 - Development of analysis improvements is ongoing.

- Minimal SU(5) SUSY-GUT is still viable considering absense of superpartners at LHC.
- $p \to K^+ + \bar{\nu}$ is the most interesting process predicted.
- Liquid scintillators are ideal to idenfity K^+ and measure its energy.
- JUNO 10-year sensitivity is $au(p \rightarrow K^+ + \bar{\nu}) > 0.834 \times 10^{34}$ year at 90% C.L.
 - ...at 31% efficiency.
 - Development of analysis improvements is ongoing.
- JUNO is under detector assembly. Stay tuned!

- $Q_{edep} \in [200, 600]$ MeV reconstructed visible energy, smeared with $\mathcal{N}(0, \sigma_E)$ on MC truth. $R \in [0, 17.5]$ m reconstructed radius, smeared with $\mathcal{N}(0, 0.3)$ m on MC truth. nMichel number of Michel electrons.
 - michelR average distance between Michel electrons and locations of energy deposition
 - nCapture number of neutron captures.
 - nTagR average distance between neutron captures position and location of energy deposition

• Towards string theory, maximal subgroup in each step.

 $E_8 \rightarrow E_7 \rightarrow E_6 \rightarrow SO(10) \rightarrow SU(5) \rightarrow SU(3) \times SU(2) \times U(1)$

▲□▶▲□▶▲□▶▲□▶ 三日 のへで