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• Finding  always implies new physics 

• Lepton number violation  

• Neutrinos are Majorana fermions ( ) 

• Origin of neutrino masses 

• Insight into absolute neutrino mass scale 

• Possibly linked to matter and anti-matter 
asymmetry 

• Experimental signature is a peak at the Q-value 
(  for )

0νββ

ν ≡ ν̄

2458 keV 136Xe

Motivation for Neutrinoless Double Beta Decay
2

Not to scale 
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EXO-200 

 
• First -class  search 

• Discovered  in  in 2011 

• Limit:  

• Sensitivity:  

• Pioneered ultra low-background LXe 
TPC technology

100 kg 0νββ

2νββ 136Xe

T0ν
1/2 > 3.5 × 1025 yr

T0ν
1/2 > 5.0 × 1025 yr

Liquid Xenon Detectors for 0νββ
4

Phys. Rev. Lett. 123, 161802 (2019)
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Search for  with the 
Complete EXO-200 Dataset 

https://indico.sanfordlab.org/event/28/
contributions/313/

0νββ



nEXO 

 
•  of liquid xenon 

• Better self-shielding and external 
shielding 

• Improved charge (tiles) and light 
(SiPM) readout 

• Projected Sensitivity: 

5 tonnes

T0ν
1/2 > 1.35 × 1028 yr

EXO-200 

 
• First -class  search 

• Discovered  in  in 2011 

• Limit:  

• Sensitivity:  

• Pioneered ultra low-background LXe 
TPC technology

100 kg 0νββ

2νββ 136Xe

T0ν
1/2 > 3.5 × 1025 yr

T0ν
1/2 > 5.0 × 1025 yr

Liquid Xenon Detectors for 0νββ
4

Phys. Rev. Lett. 123, 161802 (2019) J. Phys. G: Nucl. Part. Phys. 49, 015104 (2022)

>2 orders of magnitude 

improvement 


in half-life sensitivity 



• Advantages of the Liquid Xenon 
Technology for  

• Scalability 

• Low intrinsic background 

• Good energy resolution 

• Topological discrimination of 
backgrounds 

• Possibility of a control experiment

0νββ

Why a Liquid Xenon Detector?
5



• Single Phase Time Projection 
Chamber (TPC)  

•  of liquid xenon  

•  enriched in  

• Single  drift length 

• Energy resolution  

• Active water Cherenkov muon veto 

• Preferred site: SNOLAB

5000 kg

90 % 136Xe

1.2 m

σ/Qββ = 0.8 %

Overview of the nEXO Detector
6

nEXO pre-conceptual Design Report:  
arXiv:1805.11142

nEXO Sensitivity and Discovery Potential:  
J. Phys. G: Nucl. Part. Phys. 49, 015104 (2022)

https://arxiv.org/abs/1805.11142


Signal in a Liquid Xenon TPC
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Signal in a Liquid Xenon TPC

γ

µ

0νββ

⃗E

• Ionizing radiation will either ionize or excite Xe atoms  

• Photons are immediately detected by the SiPMs 
around the barrel and provide a time stamp 

• Electrons are drifted to charge collection tiles at the top 

• Charge collection tiles with 3mm pitch strips detect e- 

• 0νββ charge is mostly spatially contained
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Scintillation Light

Ionization Charge

Ionizatio
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Signal in a Liquid Xenon TPC
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• Ionizing radiation will either ionize or excite Xe atoms  

• Photons are immediately detected by the SiPMs 
around the barrel and provide a time stamp 

• Electrons are drifted to charge collection tiles at the top 

• Charge collection tiles with 3mm pitch strips detect e- 

•  charge is mostly spatially contained (unlike ’s)0νββ γ
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Multidimensional Event Analysis
13

nEXO Sensitivity and Discovery Potential: J. Phys. G: Nucl. Part. Phys. 49, 015104 (2022)



Energy 

Anti-correlation between number of light 
and charge quanta can be exploited for 
improved energy resolution  
—> Expect σ/Qββ = 0.8 %
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Standoff Distance 

Most backgrounds originate from outside 
the fiducial volume 

 events are uniformly distributed0νββ

nEXO Sensitivity and Discovery Potential: J. Phys. G: Nucl. Part. Phys. 49, 015104 (2022)
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Topology

0νββ0νββγ − Bkg + Brems.
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• Bottom-up estimate of 
background budget 
through extensive 
screening of all detector 
materials 

• In-house electro-formed 
copper for some TPC 
components to 
significantly reduce 
intrinsic radioactivity from 

 and  
• Ongoing R&D looking into 

further reduction of  
• Cosmogenically 

produced  can be 
vetoed with at least 

efficiency and 
negligible lifetime loss

238U 232Th

222Rn

137Xe

70 %

Data-Drive Background Model
14
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nEXO’s Sensitivity and Discovery Potential
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• Credible background estimation, founded on radioassay data and coupled with a detailed MC model  

• Good agreement between prediction and data demonstrated by EXO-200 

• nEXO’s sensitivity is robust even against misestimates of background components

Impact of Background Modeling on the Sensitivity
17
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Potential Discovery of  in nEXO0νββ
18

• Simulated  signal strength at  

• A positive signal in nEXO unlikely to be mistaken for an unknown background! 
• Possible to run control experiment with depleted xenon to confirm discovery

0νββ T1/2 = 0.74 × 1028 yr Region of Interest: 
•  
•  (signal-

like events) 
• Innermost 2 tonnes of 

LXe ( )

E ∈ Qββ ± FWHM/2
DNN > 0.85

Standoff > 20 mm



• Experimental limit on  translated into 
limit on  

•  

•  

• nEXO will completely cover the Inverted 
Neutrino Mass Ordering

T0ν
1/2

mββ

T0ν
1/2 > 1.35 × 1028 yr

⟨mββ⟩ < (4.7 − 20.4) meV

Physics Reach of nEXO
19
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• Agnostic selection of NMEs over last 
20 years 

• Great promise for next-generation 
experiments to make a discovery 

• Multi-isotope confirmation of  
needed to understand physics 
mediating this decay 

• Additional mechanism beyond 
light Majorana neutrino exchange 

0νββ

Tonne-Scale 0νββ
20

NMEs values don’t follow a statistical distribution. Only a single value is 
true. However, calculations are difficult and have large uncertainties 



• Searches for  are a powerful tool to probe physics beyond 
the Standard Model 

• nEXO utilizes a tonne-scale LXe TPC to search for  in  

• Low intrinsic and well-understood background 

• Good energy resolution 

• Powerful background discrimination using multi-variate analysis 

• Capability for running a control experiment with natXe 

• This is a very exciting time for  and a discovery might be just 
around the corner!!

0νββ

0νββ 136 Xe

0νββ

Summary
21

www.symmetrymagazine.com
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Improved Realism of Detector Simulation and Reconstruction
24
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Charge Simulation 
• Complete charge 

propagation through TPC 
• Inclusion of diffusion & 

electron lifetime effects  
• Realistic ASIC electronics 

noise added to 
waveforms

Rotated Energy 
• Anti-correlation between 

light and charge exploited 
by combining both for 
energy estimate 

• LXe “skin” effects due to 
open-field cage design is 
well understood 
(arXiv:2009.10231v2)

Energy Resolution 
• Not dominated by either 

light or charge channel 
• Estimated to be 

 
• In good agreement with 

semi-empirical resolution 
model (validated by 
EXO-200)

σQ/Q = 0.8 %

Light Simulation 
• Data-driven optical 

properties for SiPMs 
• Conservative values for 

reflectivities of passive 
TPC components  

• Detailed understanding of 
photon propagation

https://arxiv.org/abs/2009.10231


Light and Charge Detection
25
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Light Detection in nEXO 
26

Single Sipm

SiPM Array

SiPM Stave

Full light detection system

1cm2



• Crucial to optimize Photon Transport 
Efficiency for increased light collection 
                  
            

• Highly dependent on reflectivity of TPC 
components 

• Developed new light simulation of nEXO with 
GPU-based Chroma software 
https://github.com/nEXO-collaboration/chroma 

• > 300x faster 

• More detailed geometry

ϵ = PDE ⋅ PTE

Light Transport Simulations
27

CAD Model 
of nEXO

https://github.com/nEXO-collaboration/chroma


Lightmap Simulation
28

 photons contained  
in this lightmap

∼ 1012

nEXO Sensitivity and Discovery Potential: arXiv:2106.16243

https://arxiv.org/abs/2106.16243
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• Varied optical parameters and 
evaluated systematic error

• Estimated PTE combined with 
measured PDE results in 
                     
        ϵ = PDE ⋅ PTE ≈ 6.7 %
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• Motivated by success in EXO-200 

• Allows equivalent discrimination with improved 
signal efficiency due to recovering of signal 
events accompanied by Bremsstrahlung 

• Trained on waveform-level simulations, as we would 
with real data 

• Training dataset:  and  with 

• Uniform energy between  

• Uniform and random distribution in the detector 

• Disentangled DNN variable from the other two fit 
dimensions  

• Expect signal efficiency at 
background misidentification

0νββ γ′ s

900 keV − 3600 keV

∼ 80 % ∼ 5 %

DNN-based Signal and Background Discrimination
29
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• nEXO is running an extensive 
characterization campaign with several 
setups measuring 

• Absolute PDE in vacuum 
• Ostrovskiy et al. (nEXO) IEEE TNS 62 (2015) 
• A. Jamil et al. (nEXO) IEEE TNS 65 (2018) 
• G. Gallina et al. (nEXO) NIMA 940 (2019) 

• Have identified devices that meet our 
requirement 

• Working together with vendors to 
increase operational range  

Characterization of SiPM Performance
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W
ithin nEXO

 requirem
ents

G. Gallina et al. (nEXO) NIMA 940 (2019)

G. Gallina et al. (nEXO) NIMA 940 (2019)



• nEXO is running an extensive 
characterization campaign with several 
setups measuring 

• Reflectivity in vacuum and LXe 
• P. Nakarmi et al. (nEXO) JINST 15 (2020) 
• P. Lv et al. (nEXO) IEEE TNS 99 (2020) 
• M. Wagenpfeil et al. (nEXO) In prep. (2021 

• Photons reflected from SiPM surface 
can be detected by other SiPMs 

• Reflectivity of passive TPC components 
crucial for good light collection 
efficiency

Characterization of SiPM Performance
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Liquid xenon 
Vacuum

P. Nakarmi et al. (nEXO) JINST 15 (2020)

P. Lv et al. (nEXO) IEEE TNS 99 (2020)


