Search for $0\nu\beta\beta$ beyond 10^{28} yr half-life sensitivity with nEXO

Ako Jamil for the nEXO Collaboration

Yale University

May 12, 2022

CoSSURF, Rapid City

Motivation for Neutrinoless Double Beta Decay

- Finding 0
 uetaetaeta always implies new physics
 - Lepton number violation
 - Neutrinos are Majorana fermions ($\nu \equiv \bar{\nu}$)
 - Origin of neutrino masses
 - Insight into absolute neutrino mass scale
 - Possibly linked to matter and anti-matter asymmetry
- Experimental signature is a peak at the Q-value $(2458 \, keV \, \text{for}^{136} Xe)$

Liquid Xenon Detectors for $0 u\beta\beta$

TPC technology

Liquid Xenon Detectors for $0\nu\beta\beta$

- Sensitivity: $T_{1/2}^{0\nu} > 5.0 \times 10^{25} \text{ yr}$
- Pioneered ultra low-background LXe TPC technology

https://indico.sanfordlab.org/event/28/ contributions/313/

Liquid Xenon Detectors for 0 uetaeta

Phys. Rev. Lett. 123, 161802 (2019)

>2 ORDERS OF MAGNITUDE IMPROVEMENT IN HALF-LIFE SENSITIVITY

Charge collection tile Dy opping Output Output Dy opping Output <

nEXO

- 5 tonnes of liquid xenon
- Better self-shielding and external shielding
- Improved charge (tiles) and light (SiPM) readout
- Projected Sensitivity: $T_{1/2}^{0\nu} > 1.35 \times 10^{28} \,\mathrm{yr}$

Why a Liquid Xenon Detector?

- Advantages of the Liquid Xenon Technology for $0\nu\beta\beta$
 - Scalability
 - Low intrinsic background
 - Good energy resolution
 - Topological discrimination of backgrounds
 - Possibility of a control experiment

Overview of the nEXO Detector

- Single Phase Time Projection Chamber (TPC)
 - 5000 kg of liquid xenon
 - 90% enriched in ¹³⁶Xe
 - Single 1.2 m drift length
 - Energy resolution $\sigma/Q_{\beta\beta} = 0.8\%$
 - Active water Cherenkov muon veto
- Preferred site: SNOLAB

Xenon Storage

> Clean Room

Equipment Deck

TPC

Water Tank

nEXO pre-conceptual Design Report: arXiv:1805.11142

•

٠

Photons are immediately detected by the SiPMs • around the barrel and provide a time stamp

- Photons are immediately detected by the SiPMs ٠ around the barrel and provide a time stamp
- ٠

- Photons are immediately detected by the SiPMs ٠ around the barrel and provide a time stamp
- ٠

- Photons are immediately detected by the SiPMs ٠ around the barrel and provide a time stamp

- Bottom-up estimate of background budget through extensive screening of all detector materials
- In-house electro-formed copper for some TPC components to significantly reduce intrinsic radioactivity from ²³⁸U and ²³²Th
- Ongoing R&D looking into further reduction of ²²²Rn
- Cosmogenically produced ¹³⁷Xe can be vetoed with at least 70% efficiency and negligible lifetime loss

- Bottom-up estimate of background budget through extensive screening of all detector materials
- In-house electro-formed copper for some TPC components to significantly reduce intrinsic radioactivity from ²³⁸U and ²³²Th
- Ongoing R&D looking into further reduction of ²²²Rn
- Cosmogenically produced ¹³⁷Xe can be vetoed with at least 70% efficiency and negligible lifetime loss

- Bottom-up estimate of background budget through extensive screening of all detector materials
- In-house electro-formed copper for some TPC components to significantly reduce intrinsic radioactivity from ²³⁸U and ²³²Th
- Ongoing R&D looking into further reduction of ²²²Rn
- Cosmogenically produced ¹³⁷Xe can be vetoed with at least 70% efficiency and negligible lifetime loss

- Bottom-up estimate of background budget through extensive screening of all detector materials
- In-house electro-formed copper for some TPC components to significantly reduce intrinsic radioactivity from ²³⁸U and ²³²Th
- Ongoing R&D looking into further reduction of ²²²Rn
- Cosmogenically produced ¹³⁷Xe can be vetoed with at least 70% efficiency and negligible lifetime loss

- Bottom-up estimate of background budget through extensive screening of all detector materials
- In-house electro-formed copper for some TPC components to significantly reduce intrinsic radioactivity from ²³⁸U and ²³²Th
- Ongoing R&D looking into further reduction of ²²²Rn
- Cosmogenically produced ¹³⁷Xe can be vetoed with at least
 70% efficiency and negligible lifetime loss

nEXO's Sensitivity and Discovery Potential

nEXO's Sensitivity and Discovery Potential

nEXO's Sensitivity and Discovery Potential

Impact of Background Modeling on the Sensitivity

- Credible background estimation, founded on radioassay data and coupled with a detailed MC model •
 - Good agreement between prediction and data demonstrated by EXO-200
- nEXO's sensitivity is robust even against misestimates of background components

Potential Discovery of $0\nu\beta\beta$ in nEXO

- •

Physics Reach of nEXO

- nEXO will completely cover the Inverted Neutrino Mass Ordering

Tonne-Scale $0\nu\beta\beta$

- Agnostic selection of NMEs over last 20 years
- Great promise for next-generation experiments to make a discovery
- Multi-isotope confirmation of $0\nu\beta\beta$ needed to understand physics mediating this decay
 - Additional mechanism beyond light Majorana neutrino exchange

NMEs values don't follow a statistical distribution. Only a single value is true. However, calculations are difficult and have large uncertainties

Summary

- Searches for $0\nu\beta\beta$ are a powerful tool to probe physics beyond the Standard Model
- nEXO utilizes a tonne-scale LXe TPC to search for $0\nu\beta\beta$ in ¹³⁶ Xe
 - Low intrinsic and well-understood background
 - Good energy resolution
 - Powerful background discrimination using multi-variate analysis
 - Capability for running a control experiment with natXe •
- This is a very exciting time for $0\nu\beta\beta$ and a discovery might be just around the corner!!

www.symmetrymagazine.com

Mike Heffner

Bindiva Chana

Collaboration Meeting Dec 2020

BACKUP SLIDES

Improved Realism of Detector Simulation and Reconstruction

Light Simulation

- Data-driven optical properties for SiPMs
- Conservative values for reflectivities of passive TPC components
- Detailed understanding of photon propagation

Charge Simulation

- Complete charge propagation through TPC
- Inclusion of diffusion & electron lifetime effects
- Realistic ASIC electronics noise added to waveforms

- Anti-correlation between light and charge exploited by combining both for energy estimate
- LXe "skin" effects due to open-field cage design is well understood (arXiv:2009.10231v2)

Energy Resolution

- Not dominated by either light or charge channel
- Estimated to be $\sigma_Q/Q = 0.8~\%$
- In good agreement with semi-empirical resolution model (validated by EXO-200)

Light and Charge Detection

Light Detection in nEXO

SINGLE SIPM

SIPM ARRAY

FULL LIGHT DETECTION SYSTEM -

Light Transport Simulations

Crucial to optimize Photon Transport
 Efficiency for increased light collection

$\epsilon = PDE \cdot PTE$

- Highly dependent on reflectivity of TPC components
- Developed new light simulation of nEXO with GPU-based Chroma software https://github.com/nEXO-collaboration/chroma
 - > 300x faster
 - More detailed geometry

nEXO Sensitivity and Discovery Potential: arXiv:2106.16243

 Varied optical parameters and evaluated systematic error

nEXO Sensitivity and Discovery Potential: <u>arXiv:2106.16243</u>

- Varied optical parameters and evaluated systematic error
- Estimated PTE combined with measured PDE results in
 - $\epsilon = \text{PDE} \cdot \text{PTE} \approx 6.7\%$

nEXO Sensitivity and Discovery Potential: <u>arXiv:2106.16243</u>

- Varied optical parameters and evaluated systematic error
- Estimated PTE combined with measured PDE results in
 - $\epsilon = \text{PDE} \cdot \text{PTE} \approx 6.7\%$

nEXO Sensitivity and Discovery Potential: <u>arXiv:2106.16243</u>

DNN-based Signal and Background Discrimination

- Motivated by success in EXO-200
 - Allows equivalent discrimination with improved signal efficiency due to recovering of signal events accompanied by Bremsstrahlung
- Trained on waveform-level simulations, as we would with real data
- Training dataset: $0\nu\beta\beta$ and $\gamma's$ with •
 - Uniform energy between 900 keV 3600 keV
 - Uniform and random distribution in the detector •
- Disentangled DNN variable from the other two fit dimensions
- Expect $\sim 80\%$ signal efficiency at $\sim 5\%$ background misidentification

Background misidentification [%]

Characterization of SiPM Performance

- nEXO is running an extensive characterization campaign with several setups measuring
 - Absolute PDE in vacuum
 - Ostrovskiy et al. (nEXO) IEEE TNS 62 (2015) •
 - A. Jamil et al. (nEXO) IEEE TNS 65 (2018) ٠
 - G. Gallina et al. (nEXO) NIMA 940 (2019)
 - Have identified devices that meet our requirement
 - Working together with vendors to increase operational range

Characterization of SiPM Performance

- nEXO is running an extensive characterization campaign with several setups measuring
 - Reflectivity in vacuum and LXe
 - P. Nakarmi et al. (nEXO) JINST 15 (2020)
 - P. Lv et al. (nEXO) IEEE TNS 99 (2020)
 - M. Wagenpfeil et al. (nEXO) In prep. (2021
 - Photons reflected from SiPM surface can be detected by other SiPMs
 - Reflectivity of passive TPC components crucial for good light collection efficiency

