

SENSEI

performance, results, and prospects for sub-GeV dark-matter searches

A. M. Botti* for the SENSEI[†] collaboration Conference on Science at SURF May 11-13, 2022

Image: SENSEI sensor

* Fermi National Accelerator Laboratory · abotti@fnal.gov

† Sub-Electron-Noise Skipper-CCD Experimental Instrument · https://sensei-skipper.github.io

Fermilab Orensei

The Oensei Collaboration*

L. Barak, I. M. Bloch, E. Etzion, A. Orly, T. Volansky

A. M. Botti, G. Cancelo, F. Chierchie, M. Crisler, A. Drlica-Wagner², J. Estrada, G. Fernandez Moroni, M. Sofo Haro³, L. Stefanazzi, S. Uemura, J. Tiffenberg

M. Cababie¹, D. Rodrigues¹

L. Chaplinsky, R. Essig, D. Gift, S. Munagavalasa, A. Singal

T.-T. Yu

*as in its last publication

¹ Also Fermilab ² Also U. Chicago ³ Also CAB, CNEA-CONICET-IB Fully funded by Heising-Simons Foundation & leveraging R&D support from Fermilab

UNIVERSITY OF

Fermilab

The Orensei Experiment

Sub-Electron-Noise Skipper-CCD Experimental Instrument

New generation Charge Couple Devices **(CCD)** Developed at **LBNL** MicroSystems Lab Energy threshold ~ **1.1 eV** (Si bandgap) Readout noise ~ **0.1 e**⁻

Main goals

- · First DM detector with Skipper-CCDs
- \cdot Validate technology for DM and ν detection
- · Probe DM masses at the MeV scale (e recoil)
- Probe axion and hidden-photon DM masses > 1 eV (absorption)

The Oensei Experiment

	2017	2018	2019	2020	Ongoing
	Demonstrate sub-electron resolution	DM search with proto-SENSEI (0.1 g) at surface	DM search with proto-SENSEI at MINOS (230 m.w.e.)	DM search with science grade (~2 g) at MINOS	Production (100g) + commissioning at SNOLAB (6000 m.w.e.)
sejuju 16 14 12 10 8 6 4 2	4000 samples	4 a			
	Tiffenberg, Javier, et al. Physical Review Letters 119.13 (2017): 131802.				

First Skipper-CCD prototypes

- Prototype designed at LBNL MSL
- 200 & 250 μm thick, 15 μm pixel size
- Two sizes 4k × 1k (0.5gr) & 1.2k × 0.7k pixels
- Parasitic run, optic coating and Si resistivity ~10 k $\!\Omega$
- 4 amplifiers per CCD, three different RO stage designs

Instrument:

- · System integration done at Fermilab
- · Custom cold electronics
- · Firmware and image processing software
- \cdot Optimization of operation parameters

Charge-coupled devices (CCD)

CCD read-out noise

Traditional **CCD**: **charge** transferred to sense node and read **once**

Pedestal and **signal** integration reduces **high-frequency** noise.

But not low frequency...

Skipper CCD read-out

Multiple sampling of same pixel without corrupting the **charge** packet.

Pixel value = **average** of all samples

Suggested in **1990** by Janesick et al. (doi:10.1117/12.19452)

Skipper CCD read-out

1. **pedestal** integration.

- 2. **signal** integration.
- 3. charge = signal pedestal.
- 4. **Repeat** N times.
- 5. Average all samples.

Then, the low-frequency noise is reduced

CoSSURF 2022 May 11-13, 2022

⊘ ensei **‡**Fermilab

Skipper-CCD read-out noise

heasured charge in pixel [e⁻]

11

Skipper-CCDs for dark matter

Light-**DM** mass range:

- 1-1000 MeV for **e**⁻ recoil
- 1~1000 eV for absorption
- 0.5~1000 MeV Nucleus recoil (Migdal effect)

Sensitivity to **1,2,3 e**⁻ signals needed: **Skippers** can do this! But only if we understand and control **backgrounds**

Environmental background:

- ^{\square} Air-shower **muons** \rightarrow go **underground**
- Soil radioactivity/environmental radiation → shielding

Detector noise:

- Dark counts \rightarrow CCD **operation**
- ^D Defects in crystal lattice \rightarrow quality **cuts**
- $_{\scriptscriptstyle \rm D}$ Other spurious charge $\,\rightarrow$ CCD **operation** + quality **cuts**

Expected background

DC (e-/pix/day)								
10	General purpouse CCD setups. No IR cover. At sea level. Output transistor ON.							
1 10 ⁻¹	SENSEI prototype surface run (low resistiv. Si) and CONNIE experiment (high resistiv. Si). ~ IR cover. At sea level. Output transistor ON.							
10-2		Dark Current	$\geq 1\mathrm{e}^-$	$\geq 2\mathrm{e}^-$	\geq 3e $^-$			
10-4	SENSEL prototype run (low resistiv, Si), ~ IR cover,	$[e^-pix^{-1}day^{-1}]$	[pix]	[pix]	[pix]			
10-3	At MINOS (100m underground).	→ 10 ⁻³	$1 imes 10^8$	$3 imes 10^3$	$7 imes 10^{-2}$			
10-4	DAMIC experiment run (high resistiv. Si). ~ IR cover.	10 ⁻⁵	$1 imes 10^{6}$	$3 imes 10^{-1}$	$7 imes10^{-8}$			
T	At shot Ab (2km underground). Output transistor on.	10 ⁻⁷	$1 imes 10^4$	$3 imes 10^{-5}$	$7 imes10^{-14}$			
10-5	SENSEI expectation with high resistivity Si. IR cover. At SNOLAB							
10-6	(2km underground).Output transistor OFF.	Background estimations for 1 year and 100 g.						
10-7	Theoretical expectation. Janesick, SPIE press, 2001.	Blue: discovery channel (background free) Red: modulation or limits						

Background sources

Detector

- · Dark current
- · Spurious charge
- · Amplifier light

Environment

- High-energy events (muons, electrons, etc).
- Halo and transfer inefficiency from high-energy events
- Interactions in partial charge collection layer
- \cdot Compton scattering

G. Fernandez Moroni, Phys. Rev. Applied 15, 064026 (2021)

Single electron rate reduced by optimizing operation parameters

- · Read-out mode: continuous vs expose
- · Voltage configuration
- · Amplifier off while not reading

The SENSEI Collaboration. Phys. Rev. Applied 17, 014022 (2022)

The Orensei Experiment								
2017	2018	2019	2020	Ongoing				
Demonstrate sub-electron resolution	DM search with proto-SENSEI (0.1 g) at surface	DM search with proto-SENSEI at MINOS (230 m.w.e.)	DM search with science grade (~2 g) at MINOS	Production (100g) + commissioning at SNOLAB (6000 m.w.e.)				
	e readout stages 200 um thick 0.1 gram mass	lcm	The SENSEI Collaboration Physical Review Letters 121.6 The SENSEI Collaboration Physical review letters 122.16	5 (2018): 061803. 5 (2019): 161801.				

The Oensei	Experiment
	Experimen

	2017	2018	2019	2020	Ongoing		
D su re	emonstrate ıb-electron solution	DM search with proto-SENSEI (0.1 g) at surface	DM search with proto-SENSEI at MINOS (230 m.w.e.)	DM search with science grade (~2 g) at MINOS	Production (100g) + commissioning at SNOLAB (6000 m.w.e.)		
				•			
				The SENSEI Collaboration Phys. Rev. Lett. 125, 171802 (2020)			

From prototype to science grade

Active mass ~ **0.1 g 0.019 gram-day** exposure 0.14 e- RO noise (**800** samples) SEE ~ **1.14 e-/pixel/day** Active mass ~ **0.1 g 0.069 gram-day** exposure 0.14 e- RO noise (**800** samples) SEE ~ **0.005 e-/pix/day** Active mass ~ 2 g 19.926 gram-day exposure 0.14 e- RO noise (300 samples) DC ~ 1.6x10⁻⁴ e-/pix/day

Latest results

Light mediator **e**⁻ scattering

Absorption

The Orensei Experiment

2017 2018		2019	2020	Ongoing		
Demonstrate sub-electron resolution	DM search with proto-SENSEI (0.1 g) at surface	DM search with proto-SENSEI at MINOS (230 m.w.e.)	DM search with science grade (~2 g) at MINOS	Production (100g) + commissioning at SNOLAB (6000 m.w.e.)		

SENSEI @ SNOLAB

- Science-grade skipper-CCDs achieved
- Packaging and electronics also achieved
- Phase 1 system @ SNOLAB
- Vessel delivered to SNOLAB
- First CCDs deployed

Towards a **100 g** skipper-CCD detector:

- Produce ~ **50** devices
- Packaging at Fermilab
- Testing
- Deliver and deploy at **SNOLAB**

- → 10000 dru (MINOS standard shield): proto-SENSEI
- → **3000** dru (MINOS extra shield): first science grade skipper
- → 5 (ultimate goal) dru (SNOLAB): SENSEI 100 g

Perspectives: beyond Oensei

Summary

- **SENSEI**: first dedicated experiment searching for **e-DM** interactions.
- **protoSENSEI** at the **surface** and **MINOS** produced first physics.
- First scientific grade skipper-CCD achieved.
- Best constraints on **DM-e-** scattering for light mediator and heavy mediator, up to **10 MeV**.

- Best constraints for **DM absorption** on electrons for mass **5~12.8 eV**.
- **Production** of full **100 g** detector fully funded and ongoing.
- SENSEI experiment will collect almost 2 million times the exposure of the first run in ~ 2-3 years, probing large regions of uncharted territory populated by benchmark models
- **generations** of **skipper-CCD** experiments foreseen for DM searches in the next ~ 7 years

New device

- First skipper-CCD optimized for DM detection
- 5.5 Mpix of 15 µm
- 675 µm thick
- Active mass ~ 2 g
- 20 kΩ
- 4 amplifiers
- T ~ 135 K + vacuum

Setup @ MINOS

- 230 m.w.e.
- Previous vessel + extra shielding
- T ~ 135 K + vacuum
- LTA board

Quality cuts

N_e Cuts	1		2		3		4		
1. Charge Diffusion	1.0		0.228		0.761		0.778		
	Eff.	#Ev	Eff.	#Ev	Eff.	# Ev	Eff.	$\# \mathrm{Ev}$	
2. Readout Noise	1	$> 10^{5}$	1	58547	1	327	1	155	
3. Crosstalk	0.99	$> 10^{5}$	0.99	58004	0.99	314	0.99	153	
4. Serial Register	~ 1	$> 10^{5}$	~ 1	57250	~ 1	201	~ 1	81	
5. Low-E Cluster	0.94	42284	0.94	301	0.69	35	0.69	7	
6. Edge	0.70	25585	0.90	70	0.93	8	0.93	2	
7. Bleeding Zone	0.60	11317	0.79	36	0.87	7	0.87	2	
8. Bad Pixel/Col.	0.98	10711	0.98	24	0.98	2	0.98	0	
9. Halo	0.18	1335	0.81	11	~ 1	2	~ 1	0	
10. Loose Cluster	N	/A	0.89	5	0.84	0	0.84	0	
11. Neighbor	~ 1	1329	~ 1	5		N	/A	•	
Total Efficiency	0.069		0.105		0.341		0.349		
Eff. Efficiency	0.069		0.105		0.325		0.327		
Eff. Exp. [g-day]	1.38		2.09		9.03		9.10		
Observed Events	$1311.7^{(*)}$		5		0		0		
90%CL [g-day] ⁻¹	$525.2^{(*)}$		4.449		0.255		0.253		

Example image

Masking

Fermilab Orensei

Skipper-CCD read-out noise

Skipper-CCD resolution

(Almost) Empty CCD

Front-illuminated CCD

proto-SENSEI

R&D sensor:

- optimize operation parameters
- develop packaging and shielding
- Characterize background/noise
- first physics **results**!

New package Commissioned at surface

Underground clean room Deploy at MINOS + data taking

Latest results

