

The Scintillating Bubble Chamber Experiment, a 10 kg liquid noble bubble chamber

CoSSURF May 12th, 2022 TJ Whitis

UC SANTA BARBARA

Motivations - Why make a scintillating bubble chamber?

- Liquid noble bubble chambers combine the advantages of a bubble chamber with a scintillation detector
- Useful properties for low mass dark matter and CEvNS detectors
 - Very good discrimination between nuclear and electron recoils
 - Low energy threshold
 - Position reconstruction
 - Scalability

Bubble Chamber Basics

- Bubble chambers exploit the thermodynamic properties of a superheated fluid
 - By reducing the pressure while holding the temperature constant a second lower minimum forms in the gibbs potential
- When a particle interacts with the target the heat deposited can bump a small region of the target from the higher to the lower potential, causing a bubble to form
 - This is then detected and the pressure is increased to condense the bubble again

Using a Scintillating Target

- Using a target that also scintillates adds a second information channel apart from the bubble Generation
- More accurate measurements of interaction energy for higher energy events
 - Using just a picture of a bubble from a single scatter provides very little information on the energy of the event other then the fact that it crossed the threshold
- Can detect events below the bubble threshold
 - Calibrations of the NR bubble generation threshold vs the ER bubble generation threshold
- Split in energy deposition in liquid nobles allows for powerful Nuclear recoil discrimination

Energy deposition in Liquid Nobles

Nuclear recoil discrimination

- This difference in response to electron and nuclear recoils is what provides the discrimination we need
 - 10e-6 bubbles/ER in liquid xenon down to 500 eV NR threshold.
 - 100 eV NR threshold goal for the argon chamber

--- Average sensitivity for ⁸⁸Y data Sensitivity for 207Bi 1.14 keV point ----10-2 PICO C₃F₈ Model, 25 psia, 100 keV energy depositions 4.2 keV 57Co limit from 2017 PRI 10limits, background subtraction unavailable P [bubbles per gamma interaction] imits, background subtraction unavailable imits, with background subtraction ²⁰⁷Bi limit, background subtraction unavailable 207Bi limit, with background subtraction 10-9 10-10 0.4 0.5 0.6 0.7 0.8 0.9 1.00 2.0 3.0 4.0 Seitz Threshold [keV]

30g of LXe, 30% Overall Light Collection Efficiency

SBC Design

- 10 kg of Argon doped with Xenon as the target
 - The xenon shifts the scintillation wavelength to lower frequencies, allowing transmission through quartz jars, and higher SiPM efficiency
- Liquid CF4 bath
 - Thermal management
 - Hydraulic fluid
- Superheat is achieved using a hydraulic piston to change the volume of the chamber
- Three main data channels
 - Acoustic sensors detect bubble formation
 - Cameras locate bubble in volume
 - SiPM readout scintillation light

Pressure control

- A commercial hydraulic cylinder is connected to the bottom bellows to change the volume
- The two quartz jars are connected by a bellows allowing pressure changes in the CF4
 space to be transmitted to the argon
- Testing is currently underway to validate our hydraulic system
 - Speed
 - Position control

Thermal control

- Cooling source is a centrally mounted Cryocooler
 - This cooling power is distributed using 3 nitrogen Thermosiphons on a copper band
- The detector volume is split into two regions by the placement of the thermosiphon evaporators and the use of internal baffles and insulation
 - Lower region is kept at 90 K to prevent bubble formation in the annular space between the jars
 - Upper region is at 130 K to allow the argon to be superheated

Acoustic readout

- Eight Piezoelectric sensors held in contact with the quartz jars
 - Using spring loaded mounts in the plastic insulation
- Used to trigger on bubble formation
 - Recompress and reset chamber
 - Record camera and SiPM data

Cameras

- Using 3 off the shelf Raspberry Pi camera sensors
 - Custom mount and optics
- Will operate in the vacuum space and look through sight glasses located on the top of the pressure vessel
 - Significantly reduces the complexity of the optical system
- Provides position reconstruction and veto of multiple scatters

SiPM Array

- Using Hamamatsu VUV4 SiPMs
- 32 SiPM fully surround the jars
- We are also looking into scintillation in liquid CF4 as an additional veto

SBC-Fermilab Phase 1

- Build and commission the full size prototype
- Develop control procedures
- Explore thermodynamics
- Calibrate either underground or with shielding
 - Increase the amount of superheat until we begin to see ERs generate bubbles
 - Back off the superheat
 - Determine Nuclear recoil threshold at maximum superheat

SBC-Snolab Phase 2

- Second mostly identical detector being constructed in canada for deployment at Snolab
- Intended for the actual dark matter search
- Using counted materials to reduce backgrounds
- Expect some lessons learned from the fermilab chamber

SBC-CEvNS

- Plan to reuse the SBC-Fermilab detector
- Looking at deployment at the ININ reactor in mexico
 - 1MW reactor
 - 3m distance from reactor core
 - We expect about 8 events/day above threshold from this setup
- We are also investigating the possibility of installing a larger detector at a power reactor

Dark matter sensitivity

- Low threshold and high electron recoil discrimination allow us to be competative with other low mass dark matter detectors
- 10kg-yr exposure exceeds or is comparable to other low mass dark matter experiments above 1 GeV
- If scaled up a 1 ton-yr exposure reaches the neutrino floor/fog

CEvNS sensitivity

- Simulations have been done for two cases a 10 kg detector running at a 1 MW research reactor (ININ) and a 100 kg detector running at a 2000 MW power reactor (Laguna Verde)
 - L. J. Flores et al. <u>arXiv:2101.08785</u>
- 1 year exposure provides competitive measurements or limits on multiple neutrino properties

Conclusions

- Construction is ongoing on SBC-Fermilab
- SBC-Snolab parts acquisition and counting continuing
- We expect to have calibration results in 2023 from the SBC-Fermilab detector
- Scintillating bubble chambers appear to be a good scalable option for low mass dark matter and CEvNS detectors
 - 10 kg scale detectors with a one year exposure provides competitive limits

The SBC Collaboration

- Eric Dahl
- Rocco Coppejans
- Zhiheng Shena
- Aaron Brandon
- David Velasco

- Ken Clark
- Austin De St Croix

14

12.

- Hector Hawley
- Kaden Foy
- Jonathan Corbett
- Patrick Hatch

ALBERTA UNIVERSITY OF

- Marie-Cécile Piro
- Carsten Krauss
- Daniel Durnford
- Sumanta Pal
- Youngtak Ko
- Mitchel Baker

- Pietro Giampa
- Jeter Hall
- Eric Poulin

- Russell Neilson Matt Bressler
- Noah Lamb
- Stephen Windle

INDIANA UNIVERSITY SOUTH BEND

- llan Levine
- Ed Behnke
- Cody Cripe

UC Santa Barbara

- Hugh Lippincott
- TJ Whitis
- Runze Zhang

Mathieu Laurin

Orin Harris .

Photo-Neutron sources