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The LZ Dark Matter Experiment
LUX-ZEPLIN (LZ) is an underground direct detection 

experiment at SURF.

Particle interactions with liquid xenon produce two signals:

S1 - Scintillation - Initial interaction causes LXe to emit light.

S2 - Ionization - Electrons are drifted and extracted into a gas 
Xe layer, which scintillates.
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Anomaly Finding in LZ
Goal - Quickly identify and interpret 

anomalous data in high-dimensional spaces.
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Features

● Pulse shape and size.
● 3D position.
● Signal distributions.
● Number of pulses in event.

Use Cases

● Rare background discrimination.
● Tuning aid for simulations and data 

processing algorithms.
● Waveform handscanning aid.
● Detector anomalies in real data.

Taking advantage of the high-dimensional feature space, 
we have explored two unsupervised learning techniques 
for finding patterns in the LZ data.

1. Isolation forest
2. Dimensional reduction & clustering

Simulated Data - 
Usual analysis space



LZ Data Space
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Data contains both pulse and event information

● Event level features
○ Total area of different pulses in the event

■ Single electrons, single 
photoelectrons, etc.

● S1 & S2 pulse features
○ Pulse length
○ Pulse area
○ Summary of pulse shape

● Other features
○ S1 & S2 top bottom asymmetry (TBA)
○ Drift time
○ XY position
○ S1 hit pattern size



1. Isolation Forest
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2D Example

The isolation forest is an ensemble of random decision 
trees.

1. Starting at the root node, a uniformly random 
cut is applied to a random feature.

2. Repeated recursively to build a tree, until the 
datum is isolated from others.

3. Outliers take fewer cuts to isolate.

Anomaly Score - Function of the length of decision 
path.

Why is a certain event anomalous? 
Why is a certain set of events anomalous?

This technique is directly interpretable - Features that 
are cut on frequently are the cause of the outlier. 

FT Liu, et. al., Isolation forest, ICDM 2008. 



1. Isolation Forest
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The isolation forest is an ensemble of random decision 
trees.

1. Starting at the root node, a uniformly random 
cut is applied to a random feature.

2. Repeated recursively to build a tree, until the 
datum is isolated from others.

3. Outliers take fewer cuts to isolate.

Anomaly Score - Function of the length of decision 
path.

Why is a certain event anomalous? 
Why is a certain set of events anomalous?

This technique is directly interpretable - Features that 
are cut on frequently are the cause of the outlier. 

What contributes to 
a certain event’s 

abnormality?

FT Liu, et. al., Isolation forest, ICDM 2008. 



2. Dimensional Reduction 
● Map N-dimensional (~30 features) data to 2D representation

○ Why – Outliers in multidimensional feature spaces are difficult to detect visually.
○ Goal –  quickly identify and study (not remove) outlier events.
○ How – represent in 2D while preserving structure.

● Linear techniques preserve global structure, but lose information about local structure.
○ Example: Principal Component Analysis (PCA)

● Non-linear techniques tend to preserve local structure as well as global structure
○ t-SNE: T-distributed Stochastic Neighbor Embedding

■ L.J.P. van der Maaten and G.E. Hinton. Visualizing High-Dimensional Data Using t-SNE. Journal of Machine 
Learning Research 2579-2605, 2008.

○ UMAP: Uniform Manifold Approximation and Projection. 
■ L McInnes, J Healy. UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction, ArXiv 

e-prints 1802.03426, 2018
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2. DR & Clustering - Simulated Data
Goal - Visualize ~30 dimensional feature space in 2D clusters and discern reasons for clusters.
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2. DR & Clustering - Simulated Data
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Goal - Visualize ~30 dimensional feature space in 2D clusters and discern reasons for clusters.
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After Bug Fix

Cases in simulated data
Pulse Finder Inefficiency

The cyan population in simulations consisted of 
pulses that were tagged with a long rise time.
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Rare Background Identification

iF outlier iF normal

GX 95% 5%

SS 12.5% 87.5%

Example in Cyan 
Population



Clusters in Real Data - Gas Events
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S1 TBA

S2 TBA

Purple cluster found to be gas events
● Found to have large S2 TBA and large S1 

TBA. 
● Importances allows identification of relevant 

RQs. 
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Clusters in Real Data - Photoionization

New population → after adding S2 pulse 
shape features 

● Photoionization of the wire 
electrodes from S2 light

● Originates near the walls in 
extraction region

● Detector effect
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Conclusions & Outlook
Unsupervised techniques have the potential to probe the known unknowns and the unknown unknowns in 

science data.

● Unknown unknowns - Use the largest representative feature set available.
● Known unknowns - Use appropriate features for the task.

Interpretability is important for studying events or groups of events. These techniques allow for a better 
understanding of the data.

Applications include

● Data quality,
● Anomalous backgrounds,
● Tuning data processing algorithms,
● Fixing simulation bugs.
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LZ (LUX-ZEPLIN) Collaboration
35 Institutions: 250 scientists, engineers, and technical staff

● Black Hills State University
● Brandeis University
● Brookhaven National Laboratory
● Brown University
● Center for Underground Physics
● Edinburgh University
● Fermi National Accelerator Lab.
● Imperial College London
● Lawrence Berkeley National Lab.
● Lawrence Livermore National Lab.
● LIP Coimbra
● Northwestern University
● Pennsylvania State University
● Royal Holloway University of London
● SLAC National Accelerator Lab.
● South Dakota School of Mines & Tech
● South Dakota Science & Technology  Authority
● STFC Rutherford Appleton Lab.
● Texas A&M University
● University of Albany, SUNY 
● University of Alabama
● University of Bristol
● University College London
● University of California Berkeley 
● University of California Davis
● University of California Los Angeles
● University of California Santa Barbara
● University of Liverpool
● University of Maryland
● University of Massachusetts, Amherst
● University of Michigan
● University of Oxford
● University of Rochester
● University of Sheffield
● University of Wisconsin, Madison

     US            UK         Portugal     Korea

https://lz.lbl.gov/ @lzdarkmatter
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