Results from the MicroBooNE Low-Energy Excess Search

Ivan Caro Terrazas - Colorado State University
On Behalf of the MicroBooNE Collaboration
CoSSURF 2022
11-May-2022
Anomalies at Short Baselines

LSND *PRD 64, 112007 (2001)*
- Measure neutrino oscillations
- ν_μ beam from pions-at-rest
- $\langle E_\nu \rangle = \sim 30 \text{ MeV}; L = \sim 30 \text{ m}$
- Excess at 3.8σ

MiniBooNE *Phys. Rev. D 103, 052002*
- ν_μ beam from accelerator
- $\langle E_\nu \rangle = \sim 500 \text{ MeV}; L = \sim 500 \text{ m}$
- Similar L/E as LSND
- Excess at 4.8σ
Anomalies at Short Baselines: MiniBooNE

• Cherenkov detector
 • Signal is a single electromagnetic shower; e^-/γ indistinguishable
 • Only sensitive to particles above the Cherenkov threshold:
 • No sensitivity to protons
• Possible sources for the anomaly:
 • ν_e excess
 • $\Delta \rightarrow N\gamma$

\[\nu_{\mu} \rightarrow \nu_e + n \rightarrow e^- + p \]
\[\nu_e + C \rightarrow 1eXp0\pi \]

γ vs. e^- Cherenkov rings

Phys. Rev. D 103, 052002
The MicroBooNE Experiment

• “Micro Booster Neutrino Experiment” (MicroBooNE)
• Uses a Liquid Argon Time Projection Chamber (LArTPC) as the detector technology
 • e/γ separation
• 170-ton (89-ton active volume) LArTPC
• Sits on two beam lines:
 • BNB: On-Axis
 • NuMI: Off-Axis
Status of MicroBooNE

• Collected $\sim 1.5 \times 10^{21}$ protons-on-target (POT) from 2015 to 2021
 • Analysis shown here uses a subset of full data
• Detector operated smoothly, with 96% detector + DAQ uptime
MicroBooNE Goals

LArTPC R&D
- Noise filtering
- Signal processing
- Energy reconstruction
- Detector Calibrations

ν-Ar Cross-Sections
- Explore low energy ν-Ar scattering
- Test ν-Ar models

Exotic Physics
- Test Higgs portal model
- Dark sector
- Heavy neutral leptons

Anomaly Search
- Test MiniBooNE findings
MicroBooNE Goals

LArTPC R&D
- Noise filtering
- Signal processing
- Energy reconstruction
- Detector Calibrations

ν-Ar Cross-Sections
- Explore low energy ν-Ar scattering
- Test ν-Ar models

Exotic Physics
- Test Higgs portal model
- Dark sector
- Heavy neutral leptons

Anomaly Search
- Test MiniBooNE findings

See Daisy Kalra’s talks tomorrow!

This Talk

Phys. Rev. Lett. 127, 151803

Phys. Rev. D 103, 052002
LArTPC Event

NuMI DATA: RUN 10811, EVENT 2549. APRIL 9, 2017.

Color shows deposited energy

X-axis (Drift Direction)

Z-axis (Beam Direction)

17 cm
LArTPC Event

Tracks: Protons, Muons, Pions

Color shows deposited energy

NuMI DATA: RUN 10811, EVENT 2549. APRIL 9, 2017.
LArTPC Event

Electromagnetic Showers: electron

Color shows deposited energy

NuMI DATA: RUN 10811, EVENT 2549. APRIL 9, 2017.
Main draw of LArTPCs is that they can separate photons from electrons
Main draw of LArTPCs is that they can separate photons from electrons
• Fine spatial resolution
Main draw of LArTPCs is that they can separate photons from electrons
- Fine spatial resolution
- Calorimetry

Pair production from photons produces twice the number of minimally ionizing electrons, so has twice the charge deposited at the start of the shower
Anomaly Search

NCΔ Single-Photon Search

- $NC \Delta \rightarrow N\gamma$
- Shower detached from the neutrino vertex
- Single Photon
- arXiv:2110.00409, accepted by PRL

Electron Search

- Three ν_e Searches
- Shower attached at the neutrino vertex
- Single electron
 and arXiv:2110.13978 accepted to PRD
Anomaly Search

NCΔ Single-Photon Search

- $NC \Delta \rightarrow N\gamma$
- Shower detached from the neutrino vertex
- Single Photon
- arXiv:2110.00409, accepted by PRL

Electron Search

- Three ν_e Searches
- Shower attached at the neutrino vertex
- Single electron
• Standard model process
 • Predicted Br $\Delta(1232) \rightarrow N\gamma$ is $< 1\%$
• To date, never directly observed in neutrino scattering
• Enhancement of $\Delta \rightarrow N\gamma$ signal $x3.18$ would agree with observed anomaly at MiniBooNE

arXiv:2110.00409, accepted by PRL
NCΔ Single-Photon Search: Analysis

• Utilize Pandora Multi-Algorithmic Reconstruction [EPJC 78, 182 (2018)]

• Major challenge is $NC\pi^0$ backgrounds:
 • Second shower difficult to reconstruct

• Leverage five BDTs to target key backgrounds
 • Cosmic activity, two focusing on $NC\pi^0$, $CC\nu_e$, other backgrounds from the BNB

• Backgrounds further constrained with high-purity $NC\pi^0$ sample

arXiv:2110.00409, accepted by PRL
NCΔ Single-Photon Search: Selected Events

• Signal for $\Delta \rightarrow N\gamma$: $1\gamma 1p$ and $1\gamma 0p$

$arXiv:2110.00409$, accepted by PRL
NCΔ Single-Photon Search: Results

- Disfavor NC Delta radiative decay interpretation of the MiniBooNE LEE at the 94.8% CL

arXiv:2110.00409, accepted by PRL
Anomaly Search

NCΔ Single-Photon Search

- \(NC \Delta \rightarrow N\gamma \)
- Shower detached from the neutrino vertex
- Single Photon
- [arXiv:2110.00409](https://arxiv.org/abs/2110.00409), accepted by PRL

Electron Search

- Three \(\nu_e \) Searches
- Shower attached at the neutrino vertex
- Single electron
Electron Search: Analysis Topologies

- $\nu_e + Ar \rightarrow 1e1p0\pi$
 - Deep learning approach
 - Low to medium energy ν_e
 - Targeting CCQE interactions

- $\nu_e + Ar \rightarrow 1eXp0\pi$
 - Pandora reconstruction
 - Low to medium energy ν_e
 - Two channels: 0p and Np ($N>0$)
 - MiniBooNE signal

- $\nu_e + Ar \rightarrow 1eX$
 - Wire-Cell reconstruction
 - High statistics
 - Inclusive selection

arXiv:2110.13978, submitted to PRD

arXiv:2110.14080v2, accepted by PRD

arXiv:2110.14065, accepted by PRD
Electron Search: Constraint and Systematic Uncertainties

- Use high-statistics ν_μ sample to constrain ν_e uncertainties
- Flux: ν_μ and ν_e come from same beam
- Cross-Section: ν_μ and ν_e share ν-Ar interaction model
- Validate neutrino rate modeling
- Constrain uncertainties on prediction:

<table>
<thead>
<tr>
<th>Channel</th>
<th>Reduction Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>$1e1p0\pi$</td>
<td>2.0</td>
</tr>
<tr>
<td>$1eNp0\pi$ and $1e0p0\pi$</td>
<td>1.7</td>
</tr>
<tr>
<td>$1eX$</td>
<td>3.5</td>
</tr>
</tbody>
</table>
Electron Search: e^-/γ Separation – Conversion distance

- Distance between start point of shower and track
- Photon-induced showers are detached from neutrino vertex

\[\nu_e \text{ Candidate} \]

\[\nu_e \quad \text{No Gap} \]

\[\nu_e \quad \text{10 cm} \]

BNB Run: 16341 Subrun: 27 Event: 1359
Electron Search: e^-/γ Separation – dE/dx

- Amount of energy deposited per unit length (dE/dx) at start of shower
- Median of first 4 cm of shower trunk

ν_e Candidate
Electron Search: Selections

- Blind analysis: Use data that is not in the signal region to validate analysis
- Examples:
 - Each analysis employs Boosted Decision Trees (BDT):
 - Further separate ν_e from other background
 - Cut on BDT score is chosen to provide high purity

Examples:

1eνπ0ν selection

MicroBooNE 6.86 x10^{20} POT
- Dirt (Outside TPC)
- ν_e CC
- ν other
- ν with π^0
- BNB Data

1eνπ0ν selection

MicroBooNE 2.00 x10^{20} POT
- Dirt (Outside TPC)
- ν_e CC
- ν other
- ν with π^0
- NuMI Data

Shower Transverse Development [degrees]

Electron Search: Selections

- Blind analysis: Use data that is not in the signal region to validate analysis
- Examples:
 - Each analysis employs Boosted Decision Trees (BDT):
 - Further separate ν_e from other background
 - Cut on BDT score is chosen to provide high purity
Electron Search: Selected Events

RUN 8617 SUBRUN 46 EVENT 2328

14 cm

BNB Run: 9727 Subrun: 138 Event: 6929

17 cm

BNB Run: 8590 Subrun: 136 Event: 6839

11 cm

BNB Run: 11001 Subrun: 42 Event: 2145

8 cm
Electron Search: ν_e Energy Spectra

1eNp0π

1e0p0π

1eX

1e1p0π
Observations show $\nu_e CC$ event rates in agreement, or below, the predicted rate.

- We reject our simple eLEE model at >97% CL for both exclusive ($1e1p$ CCQE, $1eNp0\pi$) and inclusive ($1eX$) event classes.
- $1e0p0\pi$ shows slight excess
 - Low sensitivity
 - γ background dominated
- We disfavor generic ν_e interactions as the primary contributor to the excess

Electron Search: Results

arXiv:2110.14054, accepted to PRL
• First search for MiniBooNE low-energy excess in MicroBooNE was performed
• No evidence for excesses of ν_e or $NC\Delta \rightarrow N\gamma$
• MicroBooNE actively pursuing new measurements to explain MiniBooNE anomaly
 • See Daisy’s Talks tomorrow!
Thank You!

This work is supported by the United States Department of Energy under Grant No. DE-SC0021191.
Neutrinos in the Standard Model

• Neutrinos come in three flavors in the Standard Model: electron, muon and tau
• Only neutral leptons
• Only interact via the weak interaction and gravity
• Neutrinos Oscillates:
 • Propagate as mass states, interact as flavor states
 • Produce some neutrino ν_α and detect it as ν_β
Neutrino Oscillations

Probability of detecting a neutrino of a given flavor oscillates as:

\[P(\text{osc}) \sim \sin^2 \left(\frac{1.27 \Delta m_{ij}^2 L}{E} \right) \]

\[\Delta m_{ij}^2 = m_i^2 - m_j^2 \]
Accelerator Neutrinos

- Accelerator neutrino experiments use a neutrino beam from the decay of (mostly) pions and kaons.
- Neutrinos categorized by distance of flight L and energy E:
 - Short-baseline experiments have $L/E \sim 1 \text{ km/GeV}$ (not sensitive to three-flavor oscillations)
 - Long-baseline experiments have $L/E \sim 10^3 \text{ km/GeV}$
Liquid Argon Time Projection Chamber (LArTPC)

- Impinging charged particles leads to ionization of argon
- Scintillation light also produced \(\sim O(ns) \)
 - Excitation (Ar*)
 - Recombination
- Ionization electrons drift according to electric field \(\sim O(ms) \)
Understanding the Detector: Modeling

Space charge effects modify local E-field

Noise filtering and signal processing improve signal-to-noise ratio

JINST 15 P07010

JINST 12 P08003
JINST 13 P07006
JINST 13 P07007
Understanding the Detector: Calibrations

MicroBooNE TPC Calibration: [JINST 15 P03022](https://jinst.science/abstract/1503.03022)
Electric Field Calibrations: [JINST 15 P07010](https://jinst.science/abstract/1507.010) & [JINST 15 P12037](https://jinst.science/abstract/1512.037)
EM Shower Calibrations: [JINST 15 P02007](https://jinst.science/abstract/1502.007), [JINST 09 P09014](https://jinst.science/abstract/0909.014) & arXiv:2110.11874

Proton dE/dx vs residual range
Key to particle ID

Invariant mass from $\pi^0 \rightarrow \gamma\gamma$
Key to electron energy scale

[JINST 15 P02007](https://jinst.science/abstract/1502.007)
Characterizing ν_e Events: Track Identification

- Likelihood function to evaluate dE/dx relative to particle range
• Classification of ν_e from other background
• No weight on energy, no use of kinematics related variables

1eNp0π

1eNp0π ν_e selection

MicroBooNE 6.86 $\times 10^{20}$ POT

- Dirt (Outside TPC)
- ν_e CC
- Cosmics
- ν other
- ν with n°

2 BDTs
16 variables

MicroBooNE 4.05 $\times 10^{18}$ POT

- Rate (inside TPC)
- ν_e CC
- Cosmics
- ν other
- ν with n°

1e0p0π

1e0p0π ν_e loose selection

MicroBooNE 6.86 $\times 10^{20}$ POT

- Dirt (Outside TPC)
- ν_e CC
- Cosmics
- ν other
- ν with n°

1 BDT
28 variables
Sidebands: Background Validation

- Blind analysis: Use data that is not in the signal region to validate analysis
- Background rich samples: Low-BDT and two shower sidebands
 - Good data-simulation agreement of selection variables
Sidebands: NuMI

- **Blind analysis**: Use data that is not in the signal region to validate analysis

- **Background rich samples**: Low-BDT and two shower sidebands
 - Good data-simulation agreement of selection variables

- **NuMI samples**:
 - High intrinsic ν_e relative to BNB
 - Selections not tuned on NuMI data: applied after frozen, before unblinding BNB data
Electron Search: Excess Model

- Unfold MiniBooNE excess under a ν_e hypothesis
 - Only considers E_ν dependence
- Apply scaling to MicroBooNE intrinsic ν_e component
Analysis Strategy

1) Event Reconstruction

2) Neutrino Event Identification and Characterization

3) Variable creation and Event Selection

4) Statistical Analysis and Signal Strength Measurement
Anomalies at Short Baselines

LSND

- Cherenkov detector
- Measure neutrino oscillations
- Observed a possible 3.8σ excess of $\bar{\nu}_e$-like events
 - $\bar{\nu}_\mu \rightarrow \bar{\nu}_e$ oscillation could be associated to potential sterile neutrinos

\[
\bar{\nu}_\mu \xrightarrow{\text{oscillation}} \bar{\nu}_e + p \rightarrow e^+ + n, \quad n + p \rightarrow d + \gamma
\]
• In the Standard Model, neutrinos are created and detected via weak interactions mediated by the W and Z bosons
 • Charged current interactions are mediated by the W boson
 • Neutral current interactions are mediated by the Z boson
• Charged current interactions couple the neutrinos to their charged lepton counterparts
Neutrino Oscillations

- Neutrinos oscillate between different flavors in flight
- First observed by the Homestake experiment in the 60’s
- Oscillations confirmed by Super-Kamiokande in the 90’s

Electron Neutrinos from the Sun
Homestake Experiment – 1960’s

Muon neutrinos from the atmosphere
Super-Kamiokande - 1998

Legend
- Expected
- Measured

Expected number without oscillations
Observed number with oscillations
On the Surface Detector

- Surface LArTPC + slow e- drift → large cosmic background
- O(10) cosmic rays/event
Signal Processing Chain

Drifting Electrons

Field Response

Signal on Wire

Electronics Response

Shaped/Amplified Signal

Digitization

Signal Data Acquisition

Deconvolution

Extraction of Charge from Signal

Response Functions (Field + Electronics)

Signal Deconvolution

Estimated Sig = \frac{\text{Measured Sig.}}{\text{Resp. Func.}} \ast \text{Filter Func.}

Frequency Domain

Induced Signals on Neighboring Wires

- **1D Deconvolution**: Time Domain
- **2D Deconvolution**: Time AND Wire Domain