

New results on Neutrino Mass from the KATRIN Experiment

Weiran Xu for the KATRIN collaboration

Massachusetts Institute of Technology

CoSSURF Conference, May 11, 2022

Weiran Xu

New results on Neutrino Mass from the KATRIN Experiment

イロト 不得下 イヨト イヨト

Neutrino mass from tritium beta decay

- Kinematics affected by neutrino mass
- Direct, model-independent measurement requiring high energy resolution $\Delta E \sim \text{eV}$
- KATRIN sensitive to a degenerated neutrino mass scale

$$m_{
u} = \sqrt{\sum_{i=1}^{3} |U_{ei}|^2 m_i^2}$$

- 4 回 ト 4 ヨ ト 4 ヨ ト

Molecular tritium final state distribution

• Correction from rovibrational final states:

$$\frac{d\Gamma}{dE} \rightarrow \left(\frac{d\Gamma}{dE}\right)' = \sum_{f} P_{f} \left. \frac{d\Gamma}{dE'} \right|_{E'=E-V_{f}}$$

Weiran Xu

イロト イボト イヨト イヨト

The KATRIN Experiment

Energy resolution characterized by $\frac{\Delta E}{E} = \frac{B_{ana}}{B_{max}} \sim 10^{-4}$.

Weiran Xu

New results on Neutrino Mass from the KATRIN Experiment

э

イロト 不得下 イヨト イヨト

Integrated spectrum to measure

- Pixel-wise response function
 - Filter width ΔE from transverse momentum at analyzing plane
 - Additional complexity from electron scattering

- Integrated spectrum
 - Flat background

-
$$N_j^{
m sig} \propto \int_{qU}^\infty {d\Gamma \over dE} \cdot R_j(E,qU) dE$$

- Measurement time adjusted to maximize sensitivity

イロト イポト イヨト イヨト

Steady-state background

- Ionization of hydrogen Rydberg atoms from the recoiling $^{206}{\rm Pb}$ in the $^{222}{\rm Rn}$ decay chain, Poissonian

- Primary and secondary electrons produced by scattering of trapped electrons from ²¹⁹Rn decays on residual gas, non-Poissonian

- Time-dependent background
 - Electrons produced from scattering of residual gas and trapped electrons between pre- and main spectrometer, removed after each scan by inserting an electron catcher
- Background rates are predicted to be nearly independent of high voltage settings

イロト イポト イヨト イヨト 三日

KATRIN timeline

Weiran Xu

New results on Neutrino Mass from the KATRIN Experiment

э

・ロト ・聞ト ・ヨト ・ヨト

KNM1+KNM2 statistics

- Livetime for neutrino mass scan
 - KNM1: 22 days
 - KNM2: 31 days
- Source activity relative to nominal value
 - KNM1: 22%
 - KNM2: 84%
- Background rate
 - KNM1: 293 mcps
 - KNM2: 220 mcps

Breakdown of uncertainty

Weiran Xu

New results on Neutrino Mass from the KATRIN Experiment

э

イロト イボト イヨト イヨト

- Blind analysis
 - Generate artificial final state distributions for each campaign
 - Freeze all systematic inputs based on Monte Carlo data with blinded $\ensuremath{\mathsf{FSD}}$
 - Unblind the FSD for real data
- Ring-wise fitting for golden run lists
 - 1 common m_{ν}^2 , 12 imes ring-wise endpoint, signal and background rates
- Three independent approaches: pull term, covariance matrix and Monte Carlo propagation
- \bullet Best fit value for $m_{\nu}^2,$ with extrapolated model in the negative region for Frequentist approach

- KNM1:
$$m_{\nu}^2 = -1.0^{+0.9}_{-1.1} \text{eV}^2$$

- KNM2: $m_{\nu}^2 = 0.26^{+0.34}_{-0.34} \text{eV}^2$

イロト イポト イヨト イヨト 二日

First sub-eV upper limit on neutrino mass

- KNM1 at 90% C.L.: $m_{\nu} < 1.1 \text{eV}$ - KNM2 at 90% C.L.: $m_{\nu} < 0.9 \text{eV}$ - Combined result at 90% C.L.: $m_{\nu} < 0.8 \text{eV}$

Nature Physics 18.2 (2022): 160-166

Reference for the Lokhov-Tkachov construction: Phys. Part. Nucl. 46, 347-365 (2015)

Weiran Xu

Bayesian combination of the two campaigns

 $\pi(\theta|\mathbf{y}) \sim \pi(\mathbf{y}|\theta) \cdot \pi(\theta)$

Weiran Xu

Improvements in the following campaigns

- Shifted analyzing plane reduce 50% of background
- New Krypton source to reduce plasma systematics
- Eliminate background from penning trap
- Precise calculation of molecular final states

The future of neutrino mass measurements

New results on Neutrino Mass from the KATRIN Experiment

KATRIN: beyond neutrino mass

Sterile neutrinos

Relic neutrinos

イロト イボト イヨト イヨト

- KATRIN has improved the modelindependent upper limit of $m_{\nu} < 0.8 {\rm eV}$ at 90% C.L. with the first two measurement campaigns
- With various improvements, KATRIN has a better sensitivity reaching $m_{\nu} < 0.5 \text{eV}$ for the next three campaigns (data release planned by early 2023)

Thanks for your attention!

Weiran Xu

• Determine the neutrino masses with ...

	Cosmology	0 uetaeta	Single eta decay
Observable	$\sum_i m_i$	$ \sum_i U_{ei}^2 m_i ^2$	$\sum_{i=1}^{3} U_{ei} ^2 m_i^2$
Upper limit	0.12eV	0.18eV	0.8eV
Dependency	٨CDM	Majorana $m_{ u}$	Kinematics

イロト イヨト イヨト イヨト 二日

Backup: Energy loss from multiple scattering

Weiran Xu