Neutrinoless Double Beta Decay and the SNO+ Experiment

CoSSURF 2022, 12th May 2022

Tereza Kroupová on behalf of the SNO+ Collaboration

The SNO+ Experiment

Multi-purpose neutrino detector at SNOLAB, Sudbury, Canada

~9300 photomultiplier tubes (PMTs)

PMT support structure, 18m diameter

Acrylic vessel, 12 m diameter

Hold up and hold down ropes

7 kt ultra-pure water shielding ·

Target

Water phase: **905 t ultra-pure water** Unloaded scintillator phase: **780 t liquid scintillator** (LS) Tellurium phase: **4 t of natural Te** loaded to the LS 2070 m rock overburden

The SNO+ Experiment

Multi-purpose neutrino detector at SNOLAB, Sudbury, Canada

Water phase: 905 t ultra-pure water

- detector calibration and external background measurements
- solar neutrino, invisible nucleon decay, n-p capture

Partial-fill phase: paused filling at 370 t LS due to COVID-19

- measurement of scintillator backgrounds
- reactor neutrinos, directionality in scintillator

Unloaded scintillator phase: 780 t liquid scintillator

- characterisation of scintillator and backgrounds
- solar, supernova, reactor and geo neutrinos

Tellurium phase: 4 t of natural Te loaded to the LS neutrinoless double beta decay!

SNO+ Scintillator

Organic liquid scintillator mixture provides high light yield and can be purified to high degree to minimise radioactive backgrounds

> Linear Alkylbenzene (LAB) bulk scintillator

1,4-Bis(2-methylstyryl)benzene (bisMSB)

secondary fluor

2.2 g/L 2,5-Diphenyloxazole (PPO)

PPO top-up campaign finished in April 2022!

primary fluor

- multi-stage distillation, water extractions, N_2 and steam stripping, AV recirculation

underground scintillator purification plant

¹³⁰Te in SNO+

¹³⁰Te in SNO+

Two Te systems (purification & synthesis/loading) built underground Telluric acid procured and stored underground since 2015 to reduce cosmogenic activation

TeA underground storage

Target 10⁻¹⁵ g/g for both ²³⁸U and ²³²Th chains for 0.5% Te phase

underground TeBD synthesis plant

[~] 10⁴-10⁵ purification factor

$0v\beta\beta$ Search in SNO+ in ¹³⁰Te

9.47 background counts/yr \rightarrow T_{1/2}>2.1 x 10²⁶ yrs after 5 yrs with 0.5 % Te (Phase I) from counting analysis

Using fiducial volume of 3.3 m Region of interest -0.5 - 1.5ơ: 2.42-2.56 MeV

External Backgrounds

 γ s from decays (²⁰⁸TI & ²¹⁴Bi) in the AV, PMTs, ropes, external water

Internal Backgrounds

Daughters of ²³⁸U and ²³²Th chains inside the AV Mitigated by purification, cover gas system, coincidence tagging and α - β scintillator pulse shape discrimination

cover gas system bags

Both ²³⁸U and ²³²Th chain contamination in unloaded scintillator measured to be 10⁻¹⁷ g/g

Cosmogenic Backgrounds

Decay of isotopes created by cosmic ray spallation on tellurium

Average path lengths in LS ~30 cm for 1 MeV γ ~0.5 cm/MeV for e-

However, all events reconstructed under the hypothesis of an e-→ multi-site events have wider time residual distributions

$$t_{res} = t_{hit} - t_{fit} - t_{tof}$$

Pulse shape discrimination (PSD) technique to classify multi-site (decays with γ s) and single-site (pure β decays, $0\nu\beta\beta$) energy depositions

Rejection by hard cuts but also used as a PSD dimension in a fit (see later)

Underground storage of Te allows for cosmogenics to decay before deployment, followed by purification

Οvββ Search Background Summary

Pause in scintillator fill allowed for a target-out measurement of backgrounds

Fiducial volume of 4 m (vs 3.3 m) and >1 m above equator

Data from 1660 h during partial fill

Οvββ Signal Extraction

Backgrounds will be constrained with side bands in volume (up to 5.5 m) and energy (1.8-3.0 MeV)

PSD dimensions break degeneracy with any unexpected cosmogenic contamination

Multi-dimensional binned likelihood analysis using MCMC floating ~30 background normalisations

- analysis based on kernel density estimation in development

T_{1/2}>1.80 x 10²⁶ yrs after 3 yrs with 0.5 % Te (Phase I)

Discovery potential after 3 years of with 0.5% Te: 3σ sensitivity for m_{$\beta\beta$} = 80-194 meV

Future Prospects

SNO+ exposure easily scalable by loading more with improved loading techniques Increasing loading to multiple % for Phase II

Conclusions

SNO+ is full of liquid scintillator and getting ready to load $\beta\beta$ isotope

All backgrounds on target for $0v\beta\beta$ search

SNO+ aims to have world leading $0v\beta\beta$ sensitivity in ¹³⁰Te

Thank-you for your attention!

Back up: Internal Radioactivity Calibration

²¹⁴Bi β and ²¹⁴Po α (not shown) decay in **tagged ²¹⁴BiPo coincidence** pairs as a calibration source

Dataset from period of stable partially filled (365 t of scintillator) detector when filling was stopped due to the pandemic in 2020

Back up: PDS Calibration

²¹⁴Bi β and ²¹⁴Po α (not shown) decay in **tagged ²¹⁴BiPo coincidence** pairs as a calibration source

Dataset from period of stable partially filled (365 t of scintillator) detector when filling was stopped due to the pandemic in 2020

Back up: Background Numbers

Partial fill ROI analysis:

Background	Expected Counts in Partial Fill ROI
Internal Water	1.8
PFA Tube ²¹⁴ BiPo	2.9
Externals	2.5
(α, n)	0
Th Chain (Scint)	0.1
U Chain (Scint)	0.3
$^{8}\mathrm{B}~ \nu\mathrm{ES}$	0.5
Total Backgrounds	8.0

Scintillator natural radioactivity: $4.7 \pm 1.2 \times 10^{-17} \text{ gU/gLAB}$ $5.3 \pm 1.5 \times 10^{-17} \text{ gTh/gLAB}$

Externals:

Background	Rate
	(Fraction of Nominal)
AV+Ropes	$0.52 \pm 0.02^{+0.39}_{-0.28}$
External Water	$0.03 \pm 0.01^{+0.61}_{-0.03}$
PMT	$2.04 \pm 0.04 ^{+3.69}_{-1.20}$

Back up: 0vββ Signal Extraction with PSD

PSD breaks degeneracy between cosmogenic backgrounds and $Ov\beta\beta$ \rightarrow main gain for discovery rather than limit setting

DNP 2021

Back up: Directionality in Partial Fill

IOP APP/HEPP 2022 talk by J. Paton