

 $\bar{v}_e = v_e$

Triangle Universities Nuclear Laboratory

Neutrinoless Double Beta Decay

2nd order weak interaction in SM Half-life ~ 10¹⁴⁻²⁴ years

Monoenergetic peak at the Q-value of $2v\beta\beta$ isotope

Directly imply neutrino is Majorana

Explain matter-antimatter asymmetry

Measuring Majorana Neutrino

If neutrino is Majorana, its mass scale can be described by effective Majorana mass (m_{BB})

- $m_{\beta\beta}\, \text{can}$ be expressed as a function of lightest neutrino mass
- subject to uncertainties in oscillation angle and neutrino mass ordering

 $m_{\beta\beta}$ can also be obtained experimentally by measuring $O\mathit{v}\beta\beta$ half-life:

$$(T_{1/2}^{0\nu})^{-1} = G^{0\nu} |M^{0\nu}|^2 m_{\beta\beta}^2$$

 $G^{0
u}$: Phase space factor

 $|M^{0\nu}|^2$: nuclear matrix element

 $|m_{\beta\beta}| = |\sum_{i} U_{ei}^2 m_i|$: effective Majorana mass

Prior to this result, the best $m_{\beta\beta}$ limit is given by the KamLAND-Zen and GERDA experiments

KamLAND-Zen

Liquid Scintillator Detector

Located in Kamioka mine with 2700m w.e.

Mini-balloon:

- 25- μ m-thick nylon film (durable)
- Fabricated in class-1 clean room
- Highly transparent (~99% at 400 nm)

Xenon Loading:

- 91% enriched ¹³⁶Xe loaded in LS inside mini-balloon (XeLS)
- Purification is well-established
- Chemically stable (noble gas)

Progress of KamLAND-Zen

Past

KamLAND-Zen 400:

- Mini-balloon Radius = 1.54 m
- Xenon mass = 320 ~ 380 kg
- Duration: 2011 ~ 2015

KamLAND-Zen 800:

Present

- Mini-balloon Radius = 1.90 m
- Xenon mass = 745 kg
- Data taking starts Jan. 2019

Future

KamLAND2-Zen:

- Xenon mass ~ 1ton
- Aiming at 100% Photocoverage
- PEN scintillation balloon film

Balloon Manufacturing at Sendai, Class 1 Clean Room

① Film Washing

③ He leak test + repairs

② Seam Welding

Mini-balloon

Background Reduction

Muon Spallation on ¹³⁶Xe

Long-lived Spallation Products:

- $\beta^{+/-}$ decay, dominating backgrounds in ROI
- Long-lived: half-lives range from ~hours to ~days, making coincidence tagging tricky
- A day-long LL spallation tagging is developed to tag 42.0±8.0% of these events
 - 8% signal sacrifice
- Non-coincidence PID could be the remedy

• Spallations of ¹³⁶Xe nuclei produce radioactive isotopes with high mass number

8

Liquid Scintillator Detector

- Has been at the heart of many great discoveries in neutrino physics
- Function primarily as a calorimeter at ~MeV range

Time Projection Chamber

Liquid Scintillator Detector

- Has been at the heart of many great discoveries in neutrino physics
- Function primarily as a calorimeter at ~MeV range

Time Projection Chamber

Enhancing monolithic LS detectors with the capability to discriminate between different event types based on tracking and topology would be a revolutionary advancement

Liquid Scintillator Detector

- Has been at the heart of many great discoveries in neutrino physics
- Function primarily as a calorimeter at ~MeV range

Time Projection Chamber

Liquid Scintillator Detector

- Has been at the heart of many great discoveries in neutrino physics
- Function primarily as a calorimeter at ~MeV range

Time Projection Chamber

Next generation technology applicable to current generation detector

KamNet: An Integrated Spatiotemporal Neural Network LAN

AttentionConvLSTM for Spatiotemporal symmetry **Spatiotemporal Data** (5.5 ns, 7.0 ns) (-14.0 ns, -12.5 ns) (-5.0 ns, -3.5 ns) (-0.5 ns, 1.0 ns) Input Images (t,θ,φ) KamNet Event Window 0.07 0.06 Amplitude Normalized Normalized 0.04 Attention Mechanism 0.02 0.01 0.00⊥ -20 -1020 30 0 10 40 Proper Hit Time [ns] φ

KamNet

Maximal information extraction for spherical LS detector

FC + ReLU+Norm+Drop /FC + ReLU+Norm+Drop

KamNet: An Integrated Spatiotemporal Neural Network LAN

AttentionConvLSTM for Spatiotemporal symmetry **Spatiotemporal Data** (5.5 ns, 7.0 ns) (-14.0 ns, -12.5 ns) (-5.0 ns, -3.5 ns) (-0.5 ns, 1.0 ns) Input Images (t,θ,φ) KamNet Event Window 0.07 0.06 Amplitude Normalized Normalized 0.04 Attention Mechanism 0.02 0.01 0.00⊥ -20 -1020 30 0 10 40 Proper Hit Time [ns] φ

KamNet

Maximal information extraction for spherical LS detector

FC + ReLU+Norm+Drop /FC + ReLU+Norm+Drop

KamNet Interpretability

- β-like signal events are strictly **single-vertex events**, all energy is deposited in a very localized region
- γ-like backgrounds are **closely-spaced multi-vertex** events, part of event energy is deposited by one (or more) γ s that slightly alter the PMT hit-time distribution
- If background events undergo β+ decay, the ortho**positronium decay time** will delay the energy deposition, making the last bin more important

KamNet for KamLAND-Zen 800

KamNet paper submitted to Phys. Rev. C Preprints available at **arXiv:2203.01870**

y cluster search

- Based on the likelihood profile of KamNet score
- Independently identify periods with high background noise
- Cut at p-value of only 0.06%
- Lead to the official half-life limit of KamLAND-Zen 800

Apply KamNet to the Entire Dataset

- Use KamNet to identify β -like signal and γ -like background
- Simultaneous fitting both types of events in all period
- Lead to 35% boost upon official half-life limit

Generic Analysis Conditions

- 40 volume bins:
 - radius 20 × {upper sphere, lower sphere}
- 3 distinct time bins:
 - Independently tuned MC spectrum
 - Fitted simultaneously using the same normalization (rate) •
- Event selection cuts:
 - Radius <2.5m and >0.7m away from bottom •
 - Radioactive decays vetoed by coincidence cut
 - $\bar{
 u}$ identified by coincidence cut
 - Poorly reconstructed events are rejected ullet
 - Veto noisy period with KamNet γ-cluster search

Long-lived & Single

- Report the limit on the Ovßß decay rate in both a **Bayesian** and a **Frequentist framework** ullet

(dataset sensitive to $Ov\beta\beta$ rate)

• Simultaneous fit the $0\nu\beta\beta$ spectrum and a long lived spectrum to constrain backgrounds.

The KamLAND-Zen 800 Frequentist result

Maximum likelihood calculation with raster scan of LL spallation rate and Ovßß rate.

60

50

40 H $\nabla \overline{\mathbf{V}}_{30}$

20

10

19

The KamLAND-Zen 800 Frequentist result Kan

Maximum likelihood calculation with raster scan of LL spallation rate and Ovßß rate.

Flat prior in event rate was used

90 C.I. Bayesian Limit: $T_{1/2}^{0\nu\beta\beta} > 2.06 \times 10^{26} \text{yr} (90 \% \text{ C}.\text{ I.})$

90 C.L. Median Sensitivity: $T_{1/2}^{0\nu\beta\beta} > 1.49 \times 10^{26} \text{yr} (90 \% \text{ C} . \text{I.})$

Summary of KamLAND-Zen 800 result

Background	Best-fit		
	Frequentist	Bayesian	
136 Xe $2 uetaeta$	11.98	11.95	
Residual rad <mark>ioactivity in</mark> Xe-LS			
²³⁸ U series	0.14	0.09	
²³² Th series	0.84	0.87	
External (R <mark>adioactivity</mark> in IB)			
²³⁸ U series	3.05	3.46	
²³² Th series	0.01	0.01	
Neutrino interactions			
$^8{\rm B}$ solar $\nu~e^-~{\rm ES}$	1.65	1.65	
Spallation products			
Long-lived	12.52	11.80	
$^{10}\mathrm{C}$	0.00	0.00	
⁶ He	0.22	0.21	
137 Xe	0.34	0.34	

Summary of KamLAND-Zen 800 result

Background	Best-fit		
	Frequentist	Bayesian	
$^{136} \mathrm{Xe} \; 2 \nu \beta \beta$	11.98	11.95	
Residual rad <mark>ioactivity in</mark> Xe-LS			
²³⁸ U series	0.14	0.09	
²³² Th series	0.84	0.87	
External (R <mark>adioactivity</mark> in IB)			
²³⁸ U series	3.05	3.46	
²³² Th series	0.01	0.01	
Neutrino interactions			
$^8{\rm B}$ solar $\nu~e^-~{\rm ES}$	1.65	1.65	
Spallation products			
Long-lived	12.52	11.80	
$^{10}\mathrm{C}$	0.00	0.00	
$^{6}\mathrm{He}$	0.22	0.21	
¹³⁷ Xe	0.34	0.34	

Bayesian result: $T_{1/2}^{0\nu\beta\beta} > 2.06 \times 10^{26} \text{yr} (90 \% \text{ C}.\text{ I.})$

<u>Frequentist confidence limit:</u> $T_{1/2}^{0\nu\beta\beta} > 1.98 \times 10^{26} \text{yr} (90\% \text{ C.L.})$

<u>Apply KamNet to entire dataset result:</u> $T_{1/2}^{0\nu\beta\beta} > 2.7 \times 10^{26} \text{yr} (90\% \text{ C.L.})$

<u>Frequentist Feldman-Cousins calculation result:</u> $T_{1/2}^{0\nu\beta\beta} > 2.3 \times 10^{26} \text{yr} (90\% \text{ C.L.})$ 1/2

KamLAND-Zen 400 & 800 combined result

10_E 2**ALLH** Zen400 Phase1 Zen400 Phase2 Zen800

The combined fit is performed in a frequentist framework. Re-analyze the KamLAND-Zen 400 data with updated background rejection techniques and long-lived spallation consideration.

$(T_{1/2}^{0\nu})^{-1} = G^{0\nu} |M^{0\nu}|^2 m_{\beta\beta}^2$ $T_{1/2}^{0\nu\beta\beta} > 2.3 \times 10^{26} \text{yr}$ $\langle m_{\beta\beta} \rangle < 36\text{--}156 \text{ meV}$

Major technical milestone for liquid scintillator technology that has leveraged:

- scalability at low cost (increased Xe loading from KLZ-400 to KLZ-800)
- deep learning algorithms (KamNet background rejection)

Future plan:

- State-of-the-art electronics upgrade (MoGURA2 for improved background rejection)
- Improved light yield, improved light collection, ${ \bullet }$ and increased Xe loading in scintillating balloon (KamLAND2 upgrade)

With nearly a 1-ton-year exposure, KamLAND-Zen is searching for Majorana neutrinos in the IO region for the very first time!

KLZ-800:

 $T_{1/2}^{0\nu\beta\beta} > 2.0 \times 10^{26} \text{yr} (90 \% \text{ C} . \text{L})$

KLZ-400 + KLZ-800 combined:

Limit: $T_{1/2}^{0\nu\beta\beta} > 2.3 \times 10^{26} \text{ yr}, \langle m_{\beta\beta} \rangle < 36 - 156 \text{ meV}$ <u>Sensitivity:</u> $T_{1/2}^{0\nu\beta\beta} > 1.5 \times 10^{26} \text{ yr}, \langle m_{\beta\beta} \rangle < 45 - 193 \text{ meV}$

Thank You for Your Attention!

KamNet: An Integrated Spatiotemporal Deep Neural Network for Rare Event Search in KamLAND-Zen

A PRC preprint can be found at arXiv:2203.01870

First Search for the Majorana Nature of Neutrinos in the Inverted Mass Ordering **Region with KamLAND-Zen**

A PRL preprint can be found at arXiv:2203.02139

