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Energy Reconstruction in EXO-200
S. Delaquis et al JINST 13 P08023
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Background Rejection in NEXT
J. Renner et al 2017 JINST 12 T01004
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KamLAND-Zen Data

18m

Temporal and Spatial InformationDecay Schemes Schematic Diagram of Detector

136Xe Excited-State Decay (Signal)

214Bi Decay (Background)

Xenon LS

Mini-balloon

A time series … … of images … … on a sphere



KamNet: An Integrated Spatiotemporal Neural Network
A. Li et al: arXiV 2203.01870, Submitted to PRC

AttentionConvLSTM 
for Spatiotemporal symmetry 

ArXiv: 1506.04214

Spherical CNN 
for SO(3) symmetry in spherical detector 

ArXiv: 1801.10130

Feature Map

Input



KamNet Result

While accepting 90% of 0𝑣ββ events, KamNet rejects ~27% of XeLS 
backgrounds and ~59% of film backgrounds

The increased rejection of 
backgrounds on mini-balloon film 

allows for the expansion of the 
fiducial volume from 157cm to 

165.8cm, resulting in 17.7% gain on 
exposure without hardware 

upgrades

Long-Lived Spallation Other Backgrounds

KamNet is trained on precisely tuned MC simulations and evaluated 
on various backgrounds in KamLAND-Zen 800

A. Li et al: arXiV 2203.01870, Submitted to PRC



Reconstruction-Level Machine Learning
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In Majorana Demonstrator, a drift-time dependency is observed 
for some reconstruction parameters


• Correcting these correlations improve the performance of 
background rejection


Reconstruction parameters are tuned detector- and run-wise, 
which is time consuming


Design a machine learning model to simultaneous solve these two 
problems:


• Continuous Parameters: reconstruction parameter


• Categorical Parameters: detector number, type and run 
number

Non-linear 
Dependency

Linear Dependency
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Manuscript under collaboration review



Boosted Decision Tree
Decision tree is highly interpretable model 

Boosting algorithm utilizes ensemble learning to makes it powerful 

Naturally handle categorical features and continuous features together
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Model Interpretability

11



Interpreting KamNet

High Attention: 
Important

Low Attention: 
Unimportant

214Bi Attention Score 10C Attention Score

•  β-like signal events are strictly single-vertex events, all 
energy is deposited in a very localized region 

• γ-like backgrounds are closely-spaced multi-vertex 
events, part of event energy is deposited by one (or 
more) γs that slightly alter the PMT hit-time distribution 

• If background events undergo β+ decay, the ortho-
positronium decay time will delay the energy 
deposition, making the last bin more important
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A. Li et al: arXiV 2203.01870, Submitted to PRC



Interpreting the Tree

Shapley value:   
• Coalitional Game Theory concept 

• Represent each player’s contribution to the total 
surplus/deficit assuming they work collaboratively

Force Plot:   
• For each input event, the SHAP package produces a force plot, 

analogous to free body diagram 

• Shapley value of each feature acts like a force drives the BDT 
decision to either higher (signal-like) or lower (background-like) 

• The value at equilibrium position is the BDT output

[ ]DETTYPE DETECTOR AVSE DCR NOISEDRIFT TIME DS, , , , , , TDRIFT50 ,

13

The “Classification Game”:   
• BDT: the Game 

• Each input feature is a player 

• Surplus means signal-like, deficit means background-like



Recover Underlying Physics

• For low drift time events:


• AvsE parameter tends to be higher than usual


• BDT outputs a negative Shapley value to 
compensate this effect


• For high drift time events


• AvsE parameter tends to be lower than usual


• BDT outputs a positive Shapley value to 
compensate this effect

The Interpretability study allows us to see the 
underlying physics of our detectors!
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Learning from the Machine
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Discover New Signature

• α backgrounds near the point contact 

• Clustered at short drift-time region


• Existence is known, but carry no delayed 
charge, thus DCR cut fails


• BDT leverages a drift-time cut to make rejection
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Learning from human vs. learning from data: 

• Delayed Charge Recovery: based on first principle of physics


• Machine learning: based on data, not limited by first principle


Identify Outperforming events: 

• Events accepted by reconstruction parameters but rejected 
by ML



Suggesting New Cuts
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Importance Ranking of Input Parameters 
Based on SHAP value distribution

“Rounded-top” Waveforms



Summary and Outlook

Machine learning has been an important part of 0𝑣ββ experiment — And it will 
grow to be more and more important in near future


Data to Model:  A good ML model is always designed to suit the type of data 
0𝑣ββ detectors produce, not the other way around

Model Interpretability: Unravelling the black-box nature of ML models help us 
re-discover the underlying physics

Learning from the Machine: Coupled with comprehensive interpretability 
study, ML models have the power to discover new background signature and 
suggest new cuts.



Thank You!



Background Rejection Performance
• MSBDT:  


• Reject multi-site γ background events


• Compared to current amplitude vs. energy (AvsE) parameter of the 
same purpose


• MSBDT: 5.11% background survival fraction


• AvsE:     6.0% background survival fraction

• αBDT:  


• Reject surface α background events


• Compared to delayed charge recovery (DCR) parameter 
of the same purpose


• αBDT:    1.3% background survival fraction


• DCR:     3.0% background survival fraction


