University of South Dakota

The SuperCDMS Experiment Overview

Ruslan Podviianiuk

on behalf of SuperCDMS collaboration

May, 2022

Outlook

- Dark matter
- SuperCDMS experiment
 - SuperCDMS in SNOLAB
 - Concept
 - Shielding
 - Detectors
 - Electronics and trigger
- Projected sensitivity
- Conclusions

Composition of matter in the universe

From cosmological observations physicists believe that the universe comprises:

27% dark matter, only 5% atoms and 68% dark energy

- Around 95% of universe is not baryonic
- Dark matter has not been directly observed. The existence and properties of dark matter are inferred from its various gravitational effects such as:
 - motions of visible matter ٠
 - gravitational lensing ٠
 - cosmic microwave background

Dark Matter

Weakly Interacting Massive Particles (WIMPs)

• May only interact through gravitational and weak forces

100 GeV/c²

10⁻⁴⁵ cm²

100

• Extremely difficult to detect

Counts [#10⁻⁶/kg/keV/day]

10⁴

10³

10²

10¹

0

WIMPs rarely induce nuclear recoils

Number of times a dark matter particle transfers a given amount of energy to a nucleus

VIMP Differential Event Rate

Хе

50

Recoil [keV]

• Predicted by theory, but no confirmed experimental detection

Super Cryogenic Dark Matter Search experiment

PAST

CDMS experiment evolution

PRESENT

• CDMS I

at the Stanford Underground Facility: first experiment to probe for supersymmetric WIMPs

• CDMS II

at the Soudan Underground Laboratory: world leading limits on WIMPs for nearly a decade

• SuperCDMS Soudan:

New detector technologies (iZIP and CDMSlite) target low-mass dark matter

• SuperCDMS SNOLAB

continue the legacy, explore new parameter space and new interactions

CDMS looks for scattering interactions of **low-mass** (< 10 GeV/c²) dark matter particles with standard model particles

Super Cryogenic Dark Matter Search in SNOLAB

SuperCDMS experiment design

DCRC boards 15 mK Dilution E-tank Refrigerator Shielding Detector NOBO tower E-stem C-stem 2

Seismic platform

C-Stem (cold) is stem for heat conduction to a dilution refrigerator

Shielding:

- Cu cans
- Inner neutron shield
- Pb gamma shield
- Outer neutron shield

E-tank is the vacuum bulkhead where the detector readout boards (DCRCs) connect

E-Stem (electronic) carries signals out from the detectors

Detector housing

Low-background lead/poly shield

- Outer neutron shield
- Radon barrier
- Gamma ray shield
- Inner neutron shield
- Copper cans of cryostat system

Archaeological lead cast in assayed crucibles All materials assayed by ICPMS and HPGe

Shield preassembled at the vendor's facility

Emission of primary **Recoil** phonons:

- Majority of recoil energy not invested to electron-hole pairs production and released as phonons
- Produced electron-hole pairs relax to the bandgap releasing energy as phonons
- When the charge carriers (electron or hole) find a partner with which to recombine, they release energy as phonons

Drifting charge carriers (e^{-}/h^{+}) across a potential ΔV generate a large number of Luke phonons (NTL effect)

SuperCDMS detectors, sensors

<u>Phonons</u>, measured via Quasi-particle trap and Electrothermal feedback Transition Edge Sensors (QETs)

- Phonons break Cooper pairs in the aluminum fins
- Generating quasi-particles which diffuse into tungsten TES
- Temperature of a tungsten TES increases on a μsec timescale
- In the superconducting phase transition, quasi-particle diffusing from the aluminum deposit energy to the tungsten
- Then, the TES resistance sharply increases when heated

Phonon sensor design

11

12 phonon, 4 charge channels sensitive to \geq 5GeV/c² DM Ge(Si) σ_{ph} =50(25) eV σ_{ch} = 160(180) eV

12 phonon channels sensitive to sub-GeV DM Ge(Si) σ_{ph} =10(5) eV

SuperCDMS detectors

Interleaved Z-sensitive Ionization and Phonon (iZIP) detector:

- Low bias voltage ~4 V
- Luke (NTL) phonons negligible
- Prompt phonon and ionization signals
- Allow discrimination between electron (ER) and nuclear recoil (NR) events and surface rejection
- Ge(Si) threshold_{ph}=350(175) eV, threshold_{ch}~1 keV
- Low background

High voltage (HV) detector:

- High bias voltage ~100 V
- NTL phonons dominate
- No ER/NR discrimination
- Ge(Si) threshold_{ph}=70(35) eV
- Low threshold

Position sensitive, Ø100 mm, h=33.3 mm mass: Ge(Si)=1.39kg(0.61 kg)

understand Si background

background

SuperCDMS SNOLAB electronics and trigger

DCRC – Detector Control and Readout Card

DCRC operations: setting detector biasing and feedback parameters, performance of analog to digital conversion of detector signals, operation with LEDs for detector, neutralization and thermometers

MIDAS – Maximum Integrated Data Acquisition System <u>MIDAS</u> a general purpose data acquisition system for small and medium scale experiments

SuperCDMS projected WIMP sensitivity

- These sensitivity limits are determined using the optimum interval method which does not incorporate any specific knowledge of background sources
- A more sophisticated analysis that takes into account known sources of background, and uses data taken over the full 5-year timescale, would improve the sensitivity estimates

SuperCDMS: A broadband DM search

i	_	_	

Traditional Nuclear Recoil	iZIP, Background free	>5 GeV	
Low Threshold Nuclear Recoil	iZIP, limited discrimination	>1 GeV	
HV mode	HV, no discrimination	0.3 - 10 GeV	
Electron recoil	HV, no discrimination	0.5 MeV - 10 GeV	
Absorption (Dark Photons, ALPs)	HV, no discrimination	1 eV - 500 keV	

SuperCDMS installation in progress

Component deliveries to SNOLAB by the construction project

Plan	Status			
Seismic Platform	Installed			
3T Gantry Crane	Installed			
Radon Reduction System	Installed			
Cleanroom	Installed			
DAQ	Installed			
Computing	Offsite, data transferred to SLAC and others			
Calibration	Preparing to ship			
Readout Electronics	Complete			
Dilution Refrigerator	Received from vendor			
Shielding	Received from vendor			
Detector Towers	Scheduling The Work			
SNOBOX	In Development			

~130 scientists at 27 institutions including 3 US national labs and 2 Canadian labs

SCDMS online Collaboration Meeting, August 2021

Conclusions

- Detector fabrication, readout electronics, cryogenic and calibration systems are complete
- Testing and characterization are happening at test facilities
- SuperCDMS SNOLAB commissioning starts in 2023
- First underground detector testing with opportunities for early science in 2024
- First science run with full detector payload early 2024. First result in early 2025
- Broadband sensitivity to new dark matter candidates

Backup

Low-background lead/poly shield

Outer neutron shield

• Reduce MeV neutrons from cavern wall by ~10⁶, ~20 for μ -induced neutrons (GeV)

61 cm outer neutron water shield in modular stainless steel tanks

Copper cryostat

Metal liner *B-field < 5 mT*

23 cm lead gamma ray shield

Radon barrier <1 Bq/m³

High-density poly base

Gamma ray shield

- Reduces MeV gammas from cavern wall by ${\sim}10^5$
- Inner layer is 1 cm ancient lead, ²¹⁰Pb < 1 Bq/kg
- Reduce Bremsstrahlung ²¹⁰Bi in shield by factor of ~20

Radon barrier

- Aluminum sheet banded around the lead shield with taped joints
- Reduce ~100 Bq/m³ to < 0.1 Bq/m³ (mine air)

Inner neutron shield

- Stacked 2" thick poly sheets
- Reduces neutron rate by >10 $\mu\text{-induced}$ neutron from rock
- Neutron from lead
- Absorbs Backscatter from SNOBOX vacuum cans
- No neutron "reflection" from lead

Copper Cans of Cryostat System

- 6.7 cm of copper in nested cans (SNOBOX)
- Copper is radiopure compared to lead
- Final gamma shield
- Reduce residual gammas by x 25
- Reduces Brem from $^{210}Bi \beta$ -decay by x 20

SNOLAB backgrounds

- Dominant background: in-crystal ³H, ³²Si, ⁶⁸Ge
- Line-of-sight contamination from ²¹⁰Pb
- Material and cavern contamination: ⁴⁰K, ⁶⁰Co

"Singles" Background Rates	Electron Recoil				Nuclear Recoil $(\times 10^{-6})$	
$({\rm counts/kg/keV/year})$	Ge HV	$\rm Si\;HV$	Ge iZIP	Si iZIP	Ge iZIP	Si iZIP
Coherent Neutrinos					2300.	1600.
Detector-Bulk Contamination	21.	290.	8.5	260.		
Material Activation	1.0	2.5	1.9	15.		
Non-Line-of-Sight Surfaces	0.00	0.03	0.01	0.07	-	—
Bulk Material Contamination	5.4	14.	12.	88.	440.	660.
Cavern Environment	—	_	_	_	510.	530.
Cosmogenic Neutrons					73.	77.
Total	27.	300.	22.	370.	3300.	2900.

SuperCDMS detectors are very sensitive

ΔV is bias voltage

The energy contribution from NTL phonons

$$E_{NTL} = e\Delta V N_{eh}$$

 $E_{tot} = E_r + E_{NTL}$

The total energy generated by recoiling particle

 ε is the average energy required to produce 1eh pair for an N_{eh} = electron recoil (in Ge 3eV, in Si 3.8 eV)

$$E_{tot} = E_r + e\Delta V N_{eh} = E_r \left(1 + Y(E_r) \frac{e\Delta V}{\varepsilon} \right)$$

- 1. Low bias voltage: NTL phonons negligible
- 2. High bias voltage: NTL phonons dominant

SuperCDMS SNOLAB electronics and trigger

<u>MIDAS</u> Maximum Integrated Data Acquisition flexible C++ based DAQ system

MIDAS organized around Online Database (ODB), Includes standard DAQ, event builder, run scheduler and "watchdog" system to detect and recover hung client processes. Supports ROOT, allows real-time analysis

3 levels of triggering:

Level 1 – hardware trigger Level 2, 3 – software triggers

DCRC Detector Control and Readout Cards DCRC operations:

- setting detector biasing and feedback parameters
- performance of analog to digital conversion of detector signals
- operation with LEDs for detector neutralization and thermometers 24

SuperCDMS installation in progress

Seismic platform

Inner lead and polyethylene shield

Hardware

Radon filter system

Chilled waterloop

Calibration system

Plan is to start commissioning run in 2023!

SuperCDMS test facilities

CUTE, Cryogenic Underground TEst facility at SNOLAB

Towers 1 and 2 arrive this June Towers 3 and 4 arrive this September Purpose of this facility is to provide an opportunity to test detector properties that cannot be tested above ground or in an unshielded facility, due to the impact of the high background rate

- Capacity of testing 1 SuperCDMS detector tower
- Base temperature ~12 mK (with detectors installed)
- Background few events/(keV kg d) below few keV ~6 events/(keV·kg·day)
- Running prototypes of HV SNOLAB detectors to study performance
- Possibility of early science result

SuperCDMS test facilities

NEXUS, Northwestern EXperimental Underground Site at Fermilab

HVeV high voltage eV resolution detectors

- Gram scale detectors
- Resolution: single electron-hole pair
- Ideal for studying charge transport in Si and Ge
- Sensitivity to a variety of sub-GeV DM models with gram·day exposures

SuperCDMS, waveforms

3000 µs phonon signal

Sampling frequencies: Ionization: 2.5 MHz Phonon: 625 kHz

100 µs Ionization signal