# STATUS OF THE LUX-ZEPLIN (LZ) EXPERIMENT

 $\langle \chi | \overline{\mathbb{Q}} | v \rangle$ 

Carmen Carmona Penn State University

May 13, 2022 - Conference on Science at SURF, SDSMT

### LZ (LUX-ZEPLIN) Collaboration 35 institutions; 250 scientists, engineers, and technicians



https://lz.lbl.gov/

Black Hills State University

- Brandeis University
- Brookhaven National Laboratory
- Brown University
- Center for Underground Physics
- Edinburgh University
- Fermi National Accelerator Lab.
- Imperial College London
- Lawrence Berkeley National Lab.
- Lawrence Livermore National Lab.
- LIP Coimbra
- Northwestern University
- Pennsylvania State University
- Royal Holloway University of London
- SLAC National Accelerator Lab.
- South Dakota School of Mines & Tech
- South Dakota Science & Technology Authority
- STFC Rutherford Appleton Lab.
- Texas A&M University
- University of Albany, SUNY
- University of Alabama
- University of Bristol
- University College London
- University of California Berkeley
- University of California Davis
- University of California Los Angeles
- University of California Santa Barbara
- University of Liverpool
- University of Maryland
- University of Massachusetts, Amherst
- University of Michigan
- University of Oxford
- University of Rochester
- University of Sheffield
- University of Wisconsin, Madison

US UK Portugal Korea



LZ Collaboration Meeting - September 8-11, 2021



Thanks to our

sponsors and

participating

institutions!



Technology **Facilities Council** 

Science and







| nstitute  | for                   |
|-----------|-----------------------|
| Basic Sci | ence                  |
|           | nstitute<br>Basic Sci |

U.S. Department of Energy Office of Science

#### Carmen Carmona - Penn State

### Sanford Underground Research Facility (SURF) in Lead, SD







Carmen Carmona - Penn State

## Dual Phase Noble Liquid TPC

- Excellent 3D imaging capability
  - \* Z position from SI S2 timing
  - + XY positions from S2 light pattern
- charge / light ratio
  => Signal vs Background discrimination





### LZ Detector Overview



Carmen Carmona - Penn State

### Xenon TPC



- 7 t of active xenon (5.6 t fiducial)
  - + 1.5 m diameter x 1.5 m height
- 494x 3" PMTs
- 4 high-voltage grids for
  - Drift field
  - + Extraction region







### PMT arrays

Hamamatsu R11410 (3")

- Top array: 253 PMTs
- Bottom array: 241 PMTs



### TPC & Skin Integration in the Surface Assembly Lab



Detector integration started in December 2018 at Surface Assembly Laboratory (SURF) ~13,500 working hours







Insertion into inner cryostat vessel

Carmen Carmona - Penn State

### Transport of TPC Underground

October 2019





Carmen Carmona - Penn State

### Underground deployment I



Carmen Carmona - Penn State

### Underground deployment II



### Underground deployment III



### LZ Cryogenics

 Cooling provided by thermosyphon technology (also used in LUX)



Thermosyphon

**Control** Panel

### **Xenon Circulation System**



### Xenon Circulation System & Cryogenics Commissioning

- Design gas circulation rate: 500 slpm
  - Turnover full Xe mass every 2.4 days
  - Underground commissioning completed
    - Up to 600 slpm demonstrated
- Purification using hot zirconium getter
  - Removes non-noble impurities





Carmen Carmona - Penn State

### LZ Commissioning

- TPC detector filled and leveled
- Grids biassed: extraction & drift fields established
  - Drift field ~190 V/cm
  - + Extraction field ~7.5 kV/cm gas
- Data processing chain exercised with first SI+S2s
- Data acquisition & trigger settings tuned
- PMT operations & characterization
  - + LED measurements for after-pulsing and single photoelectron (SPE) studies
  - + PMTs gain-matched and gain drifts monitored
  - Dark count & double photoelectron emission (DPE) analyses
- Event reconstruction algorithms highly reliable, with an accuracy >95%
- Bias mitigation techniques
  - + See talk by D.Woodward
- Application of machine learning to find anomalous events
  - + See talk by C.Amarasinghe



### Calibrations

- Different calibration systems available
  - + Internal sources
  - Commercial rod sources
  - + Photo-neutrons
  - + DD neutron generator
- See talk by M.Timalsina





- Calibrations used to inform
  - Energy scale & thresholds in TPC, Xe skin and OD
  - Position reconstruction
  - Inter-detector timings
  - + NR & ER bands in the TPC

Carmen Carmona - Penn State

### **Detector Response Characterization**

- Mono-energetic ER peaks used to find:
  - g1, photons detected (phd) per prompt scintillation photon
  - + g2, phd per ionisation electron

$$E = W\left(\frac{S1_c}{g_1} + \frac{S2_c}{g_2}\right)$$





## **Background Sources and Mitigation**

- Detector materials
  - Nothing went inter
  - Radio-assay camp ICPMS, neutron a
- Rn emanation
  - + Four screening sites
  - + All major parts emanated bef
- Rn daughters and dust on si
  - + TPC assembly in Rn-reduced
  - Dust <500 ng/cm<sup>2</sup> on all LXe
  - Rn-daughter plate-out on TPC walls <0.5 mBq/m<sup>2</sup>

ana

- Xenon contaminants <sup>85</sup>Kr, <sup>39</sup>Ar
  - Charcoal chromatography at SLAC
- Cosmogenics and externals
  - + 4300 m.w.e. underground at SURF in Lead, SD
  - Instrumented Xe skin region
  - Gd-LS outer detector
  - + High purity water shield

ector without screening 13 HPGe detectors,



#### Many sources of BG Many methods for BG mitigation



A - 1.6 mm from Loterios stock B - 3.2 mm from LZ stock C - 1.6 mm twisted wire made from LZ stock





#### Eur. Phys. J. C, 80: 1044 (2020)

Carmen Carmona - Penn State

### Kr Removal System



Carmen Carmona - Penn State

### Xenon "Skin" Veto

PTFE tiling in ICV & Bottom side skin assembly





- Anti-coincidence detector for γ-rays
- 2 tonnes of LXe surrounding the TPC
- Optically isolated from the TPC
- I" and 2" PMTs at the top and bottom
- Lined with PTFE to maximize light collection efficiency



### **Outer Detector**

Suppression of neutron-induced nuclear recoil rate  $\Rightarrow$  maximize fiducial volume



- 17 tonnes Gd-loaded liquid scintillator in acrylic vessels
- 120 8" PMTs mounted in water tank
- Observe ~8 MeV γ-rays from thermal neutron capture
- 95% design efficiency for tagging neutrons







### **Outer Detector Calibrations**

OD backgrounds slightly lower than expected
 Allows threshold < 200 keV</li>



### Expected backgrounds for 5.6 t fiducial - 1000 days





5.66 events after 99.5% ER discrimination



Distributions of single-scatter nuclear recoils in 40 Gev WIMP ROI (6-30 keV)



## Backgrounds Analysis: Rn chain backgrounds

140

100

60

40

20

Z [cm]

120**⊢Rn-22**2

- Rn-222 and Rn-220 emanates from U-238 and Th-232 contamination in detector materials and diffuses into the Xenon
  - Inline radon reduction system further reduces radon concentration
- The "naked betas" from Pb-214/ Pb-212 are a WIMP background
  - + Pb-214 is the largest background contribution
- Preliminary analysis shows Rn-222 rate within expected range



Carmen Carmona - Penn State

CoSSURF 2022

16

14

12

10

reliminary

## **Constraining Xenon Activation Backgrounds**

- Xenon can become activated by cosmogenics leading to background contributions from Xe-127, Xe-129m, Xe-131m, Xe-133 (other Xe activation products are much shorter lived)
- Activation rates can be estimated via extrapolations from LUX results and Activia calculations (open-source package for estimating activation)



#### Xe-127 decays by electron capture



WIMP background arises from rare case where Xe-127 gamma escapes the TPC and low energy cascade occurs within bulk  $\Rightarrow$  Highly veto suppressed and strong positional dependence

### Projected Sensitivity (5.6 t exposure, 1000 live days)



#### Phys. Rev. D 101, 052002 (2020)

## LZ Physics Reach

LZ physics reach extends beyond vanilla WIMPs:

- CEvNS See talk by M. Szydagis
- Solar axions
- Axion-like particles (ALPs)
- Leptophilic dark matter
- Neutrino magnetic moment
- Mirror dark matter
- DM-EFT Couplings
- 2vββ of <sup>134</sup>Xe with competitive sensitivity to 0vββ
- Sensitivity to the 0vββ decay of <sup>136</sup>Xe
- Enhanced sensitivity to low mass DM through Migdal effect
- Annual rate modulations See poster by J. Genovesi
- And more!

Phys. Rev. D 104, 092009 (2021) Phys. Rev. C. 104, 065501 (2021) Phys. Rev. C. 102, 014602 (2020)



## Outlook

- LZ is a multi-physics experiment, primed for detection of WIMPs
- Commissioning completed, currently taking science data, and extensive analyses underway
- First Science Results expected this year

2022 will be an exciting year for LZ!

**Stay Tuned!** 



Thank You!



#### Thanks to our sponsors and 35 participating institutions!



Office of Science



Science and Technology **Facilities Council** 

FC Fundação para a Ciência e a Tecnologia S Institute for Basic Science

Underground Research Facility South Dakota Science and Technology Authority

Carmen Carmona - Penn State





# Backup Slides

### Expected backgrounds for 5.6 t fiducial - 1000 days



Carmen Carmona - Penn State

CoSSURF 2022

ounts/tonne/year

### Sensitivity reach vs Pb-214 rate

Impact on 40 GeV WIMP sensitivity with increasing Pb-214 rate, as a proxy for increasing flat ER backgrounds

