Recent Results from PandaX experiment

Qiuhong Wang Fudan University

On behalf of the PandaX Collaboration

PandaX Collaboration

Dark matter and its evidence

Galactic rotation curve

Bullet Cluster

Cosmic Microwave Background

- Gravitational evidences suggest dark matter is the dominant form of matter in Universe!
- The nature of dark matter is still a mystery: WIMPs?

Dual phase xenon TPC

Dark matter: nuclear recoil (NR)

γ background: electron recoil (ER)

(S2/S1)_{NR}<<(S2/S1)_{ER}

Detector capability:

- □ Large monolithic target
- □ Good ER/NR rejection
- 3D reconstruction and fiducialization

□ High light and charge yields

PandaX Experiments

Particle and Astrophysical Xenon Experiments

China Jinping underground Laboratory

CJPL-II

PandaX-4T overview

 \Box Ultrapure water shield: 13 m (H) x 10 m (D) ~ 900 m³

□ TPC: 1.2 m (H) x 1.2 m (D)

□ 3-in PMTs: 169 top/199 bottom

PandaX-4T Subsystems

TPC conditions & data taking history

Set	1	2	3	4	5
Duration (day)	1.95	13.25	5.53	35.58	36.51
$\langle \tau_e \rangle \ (\mu s)$	800.4	939.2	833.6	1121.5	1288.2
$dt_{ m max}~(\mu { m s})$	800	810	817	841	841
$V_{\rm cathode} (-kV)$	20	18.6	18	16	16
$V_{\rm gate} (-{\rm kV})$	4.9	4.9	5	5	5
PDE (%)	$9.0{\pm}0.2$		$9.0{\pm}0.2$		
EEE $(\%)$	90.2	± 5.4		$92.6 \pm 5.$.4
$SEG_{b} (PE/e)$	3.8=	± 0.1		4.6 ± 0.1	1

- Different HV to avoid excessive discharges
- Electron lifetime: *in situ* S2 vertical uniformity calibration
- **\square** Ref: the maximum drift time ~ 840 µs
- Stable data running period: 95.0 calendar days (86 days after selection)

E PANDAX

^{83m}Kr calibration & horizontal uniformity

Gaseous source injection panel

 Internal calibration sources: ^{83m}Kr
 ^{83m}Kr production with 3.4/20 MeV proton beams (p + ^{nat}Kr → ⁸³Rb → ^{83m}Kr)
 Energy resolution @ 41.5 keV: 6.8%
 S2_b RMS in FV: 15%
 S1 RMS in FV: 19%

NR and ER calibration

Nuclear Recoil (NR) calibration with D-D & Am-Be neutrons

□ Electron recoil (ER) calibration with ²²⁰Rn

 \Box ER leak ratio (below NR median) = $6/1393 = 0.43\% \pm 0.18\%$

Background composition

Component	Nominal (evts)	
³ T (from fit to data)	532 (32)	
Flat ER* (18-30keV side band)	492 (31)	
Rn	347 (190)	
Kr	53 (34)	
Material	40 (5)	
Xe127	8 (1)	
Neutron	0.9 (0.5)	
Neutron-X	0.2 (0.1)	
Surface	0.5 (0.1)	
Accidental	2.4 (0.5)	
B8	0.6 (0.3)	
Sum	1037 (45)	

□ Flat ER (Rn+Kr+Material) is determined from

side band in DM data

 Background per unit target is improved from PandaX-II by 4 times (<10 keV) Expected below-NR-median events: 9.8 (0.6) evts

DM candidates & position distribution

□ S1 = (2, 135) PE, S2_{raw} > 80 PE, S2 < 20000

□ FV = 2.67 tonne

- \Box 1058 candidates (expected 1054±39), 6 below NR median curve (expected 9.8±0.6)
- Events uniformly distributed in the FV, as expected if dominated by tritium and radon

E PANDAX

Fitting Methods & Results

□ Fit data with unbinned likelihood with all signal/background PDFs in (S1, S2_b)

- □ No excess found, background-only p-value 0.58
- □ Projected S1 spectrum agrees with expected background

E PANDAX

Exposure: 0.63 tonne-year Sensitivity improved from PandaX-II final analysis by 2.9 times (30 GeV/c²) \Box Our limit is ~1.24 times stronger than XENON1T around 30 GeV/c² Dived into previously unexplored territory! □ Approaching the "low E" neutrino

floor

PandaX-II & Self-interacting DM

PandaX-II: 132 tonne-day exposure
 Re-analysis on other DM models
 To solve discrepancies between CDM predictions and galactic observations
 Self-interacting dark matter (SIDM)
 Light mediator: *m_φ* ~10 MeV

Search SIDM in PandaX-II

1.0

5

E PANDAX

\Box Light mediator: $m_{\phi} \leq q$

- Signal spectrum peaked more towards low energy

PandaX-II results

- No significant excess is found above background
- Upper limits on $\sigma_{\chi n} \propto arepsilon^2/m_\phi^4$
- Combination with astrophysics and cosmology
- Under SIDM, for 10-200 GeV DM mass, dark sector is colder than visible sector in early universe

S1 (PE)

45

Cosmic-ray boosted dark matter (CRDM)

- Cosmic-ray boosts the kinetic energy of Galactic DM with sub-GeV mass
- Sidereal diurnal modulation in CRDM rate and recoil energy spectra
- Calculate attenuated CRDM flux at CJPL using full MC simulation

Sub-GeV DM candidates in PandaX-II

background.

2.6

2.4

2.2

1.6 1.4

1.2F

20 (4.0)

40

60

10(1.8)

20

log₁₀(S2/S1)

E PANDAX

PandaX-II constraints on sub-GeV DM

□ Exclude $\sigma_{\chi p}$ between 10^{-31} and 10^{-28} cm² for DM mass [0.1 MeV, 0.1 GeV] □ Expand to the region beyond the astrophysical and cosmological probes

- PandaX-4T has completed its commissioning run
- ❑ With a 0.63 tonne-year exposure, PandaX-4T produced the strongest WIMP-nucleon interaction constraint
- An offline tritium removal campaign has been performed, new physics run is on going
- □ PandaX-II analysis on other physics topics: SIDM, CRDM
- □ In parallel, the collaboration is developing the plan for the next generation experiment at CJPL, we welcome collaborators!

Backups

Lower level data selection cuts

Drift time [µs]

Energy reconstruction

#Set	PDE [%]	EEE [%]	SEG [PE/e]	
1-2	9.0±0.2	90.2±5.4	3.8±0.1	
3-5	9.0±0.2	92.6±5.4	4.6±0.1	

Calibration methods

Position		
ted from gas panel		
alibration tubes		
Beam pipe		

2022/05/12

Efficiencies obtained from calibration data

■Same S1 and S2 efficiency obtained from the ER and NR data ■ Plateaued efficiency at 40 keV_{nr} ~78%.

²²²Rn level evolution

□ Set $3 \rightarrow 4$: online Kr distillation (10 SLPM)

□ Set $4 \rightarrow 5$: distillation off to reduce Rn emanation from the tower

□ Low background directly extracted: 347 ± 190 events

Tritium background

- □ Tritium spectrum identified in the data
- Likely originated from a tritium calibration at the end of PandaX-II
- □ Level floating in the final dark matter fit: ~ $5(0.3)x10^{-24}$ (mol/mol)

FV determination

- Based on background simulation (10 t-year)
- Uniform ER (including tritium) normalization come

from data

- \Box Define FoM = sqrt(B)/M
- □ Optimized FV = 2.67 tonne
- □ FV cuts in the data maintaining the same FV (correcting for reconstruction bias)

Likelihoods of the 6 below-NR events

