DarkSide-20k and the Liquid Argon Dark Matter Program

Rafał Wojaczyński on behalf of The DarkSide Collaboration

AstroCeNT CAMK, Warsaw

Republic

Conference on Science at the Sanford Underground Research Facility, 11-13 May 2022

Foundation for Polish Science

European Union European Regional **Development Fund**

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 952480

Dark matter searches

DarkSide program

Direct detection search for WIMP dark matter

Based on a two-phase argon time projection chamber (TPC)

Design philosophy based on having very low background levels that can be further reduced through **active suppression**, for **background-free** operation from both neutrons and β/γ 's

Features of noble liquid detectors

- Dense and easy to purify (good scalability, advantage over gaseous and solid target)
- High scintillation & ionization (low energy threshold, not low enough to search < 1 GeV/c² DM)
- **Transparent** to own scintillation

For TPC:

- Amplification (electroluminescence gain) for ionization signal
- Discrimination electron/nuclear recoils (ER/NR) via Pulse shape discrimination

Liquid Xenon

- Denser & Radio pure
- Lower energy threshold
- Higher sensitivity at low mass WIMP

Liquid **Argon**

- lower temperature (Rn removal is easier)
- Stronger ER discrimination via pulse shape
- ▶ Intrinsic ER BG from ³⁹Ar
- Need wavelength shifter

The Time-Projection Chamber (TPC)

Based on DarkSide-50 TPC

S1: light produced in the liquid argon due to excitation and ionisation

S2: light produced in the gas argon pocket due to ionisation electrons drifted by an E field.

DM particle

S2 light pattern + xy position

S2/S1 ratio and Pulse Shape Discrimination (PSD)

WIMPs will generate nuclear recoils (NRs)

Pulse shape discrimination (PSD)

More for PSD: DEAP-3600, Eur. Phys. J. C 81, 823 (2021)

Electron and nuclear recoils produce different excitation densities in the argon, leading to different ratios of singlet and triplet excitation states **PSD** parameter

F90: Ratio of detected light in the first 90 ns*, compared

* the 90 ns is optimized value for DS50 and detector dependent parameter. 6/19

Underground Argon

- Intrinsic ³⁹Ar radioactivity in **atmospheric argon** is the primary background for argon-based detectors
- ³⁹Ar activity sets the dark matter detection threshold at low energies (where pulse shape discrimination is less effective)
- ³⁹Ar is a cosmogenic isotope, and the activity in argon from underground sources can be significantly lower compared to atmospheric argon

Extraction & isotope separation

- Urania (Extraction):
 - Takes place at argon extraction plant in Cortez, CO, to reach capacity of 330 kg/day of Underground Argon
- Aria (Isotope separation):
 - 350 m tall column in the Seruci mine in Sardinia, Italy, for high-volume chemical and isotopic purification of Underground Argon. A factor 10 reduction of ³⁹Ar per pass is expected.

Eur. Phys. J. C 81, 359 (2021)

DArT:

 measurement of radiopurity of UAr in terms of Ar39 (batches from Urania and Aria)

2020 JINST 15 P02024

Global Argon Dark Matter Collaboration (GADM)

DarkSide-50

ArDM9/19

DS-20k: Photo sensors

- Custom cryogenic SiPMs developed in collaboration with Fondazione Bruno Kessler (FBK), in Italy.
- Key features:
 - ▶ Photon detection efficiency (PDE) ~45%
 - Low dark-count rate < 20 cps</p>
 - ▶ Timing resolution ~ 10 ns

SPAD: Single photon avalanche diode \sim 25-30 μ m²

SiPM (~ 1cm²): 94 900 SPADs

PDM (5 x 5 cm²) : 24 SiPMs 4 PDUs are summed and read as a single channel (largest single SiPM unit ever!)

PDU (20 x 20 cm²): Photo-detection unit - consist of 16 PDMs

TPC optical plane: 525 PDUs ~ 21m²

DarkSide-20k Detector

- Installed underground at the Gran Sasso National laboratories, in Italy (Hall-C)
- Covered with 1400m of rock (under the Gran Sasso mountain)
- 10 years of expected activity
- ► 21 m² instrumented with custom designed SiPM-based light detectors
- TPC filled with 50 t of UAr (20t fiducial)
- Target at 0.1 background event in 200 t yr exposure → world leading sensitivity

DarkSide-20k:Overview

Nested structure:

- Titanium Vessel contain liquid underground argon (100 t)
 - Gadolinium loaded TPC filled with 50 t of UAr
 - Neutron veto buffer between TPC and Ti vessel
- Membrane cryostat like the ProtoDune one

TPC:

- Gd-doped acrylic, PMMA (polymethylmethacrylate), vessel to capture neutrons
- ► Octagonal shape
- Cathode and anode coated with new transparent conductor (Clevios) and wavelength shifter
- Sides covered with multilayer polymeric reflector evaporated with wavelength shifter (TPB)

Veto detector

Neutrons elastically scattering from argon nuclei are indistinguishable from WIMPs signals. PSD is useless against neutron events.

Veto Structure

- 8 vertical panels of acrylic loaded with gadolinium (Gd-PMMA), form lateral walls of the TPC. Acrylic thickness: 15 cm.
- The UAr volume between the Ti vessel and Gd-PMMA serves as a veto volume with ~40 cm thickness.
- Reflector with WLS on all the surfaces

Veto Working Principle

- 1. Neutrons are moderated in the acrylic shell and then captured by gadolinium.
- 2. Gd emits multiple γ -rays with energy up to 8 MeV.
- 3. γ -rays interact in the liquid argon buffers.
- LAr scintillation light is shifted and detected by ~3000 SiPM-based photosensors.

DS-20k: Expected sensitivity

The sensitivity of DS-20k to spin independent WIMPs for different lengths of runs, with the full exposure and with the fiducial cuts applied, compared to LZ and XENONnT.

The present projection - based on a 10 yr run, giving a fiducial volume exposure of 200 t yr - is 6.3×10^{-48} cm² for 1 TeV/c² WIMP for the 90% C.L. exclusion.

Turquoise filled contours is from pMSSM11 model (E. Bagnaschi et al., Eur. Phys. J. C 78, 87 (2018). 14/19

DarkSide-Low Mass: sensitivity

- Scintillation signal (S1): threshold at ~2 keV_{ee} / 6 keV_{nr} weak sensitivity to low mass WIMPs.
- Ionization signal (S2): threshold < 0.1 keVee / 0.4 keVnr
- Use ionization (S2) only

Sensitive to low mass WIMPs!!

- Amplified in the gas region
- Sensitive to a single extracted electron
- The electron yield for nuclear recoils increases at low energy

Ar has lighter mass than Xe. So, more efficient momentum transfer from low mass DM.

 $[\operatorname{cm}^2]$

Dark matter-nucleon $\sigma_{s_{\rm I}}$

Double walled

Summary

- TPC with underground Ar has excellent properties suited to high and low mass WIMP searches.
- Projects for scaling up of UAr extraction (URANIA) and purification (ARIA) are well developed.
- ▶ ³⁹Ar depletion factor will be confirmed batch by batch in DArT.
- We are close to finalization of the photosensor array design and starting large scale production.
- ► The TPC and Veto designs are well developed.
- Aim at the better sensitivity than the current generation of WIMP search experiments.

Thank you!

DarkSide-LowMass: concept & backgrounds

Spurious electron events (1-4 Ne), Impurities in argon interacting with drifting electrons from ionization (under investigation) Main dominant backgrounds from PMT/Cryostat gamma-rays

Low gamma materials 2-fold veto

- ► Two Photo Detector Units (PDUs) were already tested in LN₂ at LNGS & CERN.
- Proto-0 (spring 2022). One PDU mounted on the Proto-0 TPC in Naples for the integration test, the S2 study and the adjustable Gas Pocket tests. From ITO to Clevios polymer.

