

Searching for beyond the Standard Model Physics with MicroBooNE

Daisy Kalra, Columbia University On behalf of MicroBooNE Collaboration CoSSURF-2022 (May 12, 2022)

Outline

- Introduction to MicroBooNE
- Liquid Argon Time Projection Chamber and its capabilities
- Beyond the Standard Model physics searches in MicroBooNE
- Summary

MicroBooNE

- MicroBooNE is 85 tonne active mass Liquid Argon Time Projection Chamber (LArTPC)
- On-axis to Booster Neutrino Beamline (BNB) with average $E_v = 800 \text{ MeV}$
- Off-axis to Neutrinos at Main Injector (NuMI) with average $E_v = 1.5 \text{ GeV}$

 Primary goal is to investigate MiniBooNE anomalous low energy excess (LEE).
 [(See talk by Ivan Caro Terrazas)]

Primary goal is to investigate MiniBooNE * anomalous low energy excess (LEE). [(See talk by Ivan Caro Terrazas)]

Electron channel

arXiv:2110.14080v2, arXiv:2110.14065 and arXiv:2110.13978 accepted to PRD

- Recent results on MicroBooNE LEE search stated that the excess is neither electron-like nor photon-like.
- Currently, exploring a variety of BSM models such as models with e⁺e⁻ final states to target the nature of MiniBooNE's LEE.

Phys.Rev.Lett 121.241801

 Rich Cross-section program using both the BNB and NuMI neutrinos.

- MicroBooNE's analysis as an important proof-of-principle for the future planned measurements in LArTPC detectors such as SBND, ICARUS, DUNE.

Liquid Argon Time Projection Chamber

JINST 12(2017)09, P09014

- Interaction generates final state particles that leave a trail of ionization electrons and scintillation light.
- Anode plane wires record signature from ionization electrons.

Liquid Argon Time Projection Chamber

- Interaction generates final state particles that leave a trail of ionization electrons and scintillation light.
- Anode plane wires record signature from ionization electrons.
- Photomultiplier tubes (32 PMTs) capture scintillation light.

JINST 12(2017)09, P09014

Liquid Argon Time Projection Chamber's Capabilities

Excellent spatial * and calorimetric resolution.

Time

Liquid Argon Time Projection Chamber's Capabilities

- Excellent spatial * and calorimetric resolution.
- * Electron photon differentiation.

Time

12

Liquid Argon Time Projection Chamber's Capabilities

- Low detection * thresholds.
- An important * ingredient in EM shower reconstruction.

Beyond the Standard Model physics with MicroBooNE

- Due to their capability of tagging particles with excellent resolution, LArTPCs are an excellent choice for performing BSM physics searches.
- This talk will summarize MicroBooNE's BSM physics searches:
 - Baryon number violation (<u>MICROBOONE-NOTE-1113-PUB</u>)
 - Search for heavy neutral leptons (<u>Phys.Rev.D 101, 052001 (2020</u>))
 - Search for higgs portal dark scalars (<u>Phys.Rev.Lett. 127, 151803 (2021)</u>)
 - MeV scale physics (<u>MICROBOONE-NOTE-1076-PUB</u>)
 - Other planned BSM searches

 Neutron-Antineutron (n-nbar) oscillation process violates baryon number by 2 units (<u>See talk by Daisy K.</u>)

Annihilation of antineutron with nearby nucleon generates multiple final state pions → a unique star-like topology

Daisy Kalra (Columbia University)

- No experimental evidence so far and current best limit on ¹⁶O bound n-nbar transition rate is provided by Super-K experiment and is 3.6 x 10³² years.
 [Phys. Rev. D 103, 012008]
- ♦ MicroBooNE's n-nbar oscillation search would be the first-ever search within ³⁹Ar bound nucleus ← Proof-of-principle for future LArTPC detectors such as SBN, DUNE.

The analysis begins with reconstructed "clusters" and selection is applied in two stages

z (Beam direction)

y (Vertical direction)

MICROBOONE-NOTE-1113-PUB

- Preselection \rightarrow Boosted Decision Tree (BDT)-based to remove backgrounds.
- Final Selection \rightarrow Image based analysis using Convolution Neural Network (CNN).

MICROBOONE-NOTE-1113-PUB

Signal efficiency	73.6%	
Background efficiency	0.0088%	MICROBOONE-NOTE-1113-PUB
Sensitivity (stat-only errors with 372 seconds of exposure)	3.059 x 10 ²⁵ years	

Evaluation of systematic uncertainties and analysis validation are going on.

BSM Physics Searches (CoSSURF-2022)

Signal efficiency	73.6%	MICROBOONE-NOTE-1113-PUB
Background efficiency	0.0088%	
Sensitivity (stat-only errors with 372 seconds of exposure)	3.059 x 10 ²⁵ years	

Evaluation of systematic uncertainties and analysis validation are going on.

Aiming for publication based on this search, this summer!

Daisy Kalra (Columbia University)

BSM Physics Searches (CoSSURF-2022)

20

Theoretically motivated particles, much heavier than neutrinos.

470 m

Daisy Kalra (Columbia University)

BSM Physics Searches (CoSSURF-2022)

(Phys.Rev.D 101, 052001 (2020))

Theoretically motivated particles, much heavier than neutrinos.

(Phys.Rev.D 101, 052001 (2020))

• Challenge is to differentiate this process from neutrino (v_{μ}) -induced processes.

- HNLs being heavier than neutrinos, take longer time to get to the detector.
- A special trigger was designed to search for HNLs following the beam spill.

- BDT is used to select signal (HNL) with masses of 260-385 MeV (kinematically constrained region)
- No data excess is observed.
- Limits are set on HNL production rate at 90% CL.

(Phys.Rev.D 101, 052001 (2020))

Currently, exploring more production modes (kaons from NuMI beam) and decay modes (e^{+} + π^{\pm})

Daisy Kalra (Columbia University)

BSM Physics Searches (CoSSURF-2022)

Higgs Portal Scalars

- Theoretically motivated dark scalars in context of the Higgs portal model.
- Production from kaons decaying at rest and decays into a pair of lepton.
- Search motivated from KOTO's initial observation of 3 unexplained invisible decay candidates in $K^0 \rightarrow \pi^0$ + invisible decay candidates [Phys. Rev. Lett. 124, 191801]

Higgs Portal Scalars

- This analysis focuses on searching these dark scalars using kaons in the NuMI beam dump.
- ♦ BDT is developed to search for S → e⁺
 + e⁻ decay.
- One event passes the selection, consistent with expected background 1.9 ± 0.8 using an exposure of 1.9 * 10²⁰ POT.

(Phys.Rev.Lett. 127, 151803 (2021))

Daisy Kalra (Columbia University)

BSM Physics Searches (CoSSURF-2022)

Higgs Portal Scalars

✤ Upper limit is set on scalar mixing angle at 95% CL.

Current efforts include expanding the search to di-muon pairs and using more statistics

Daisy Kalra (Columbia University)

BSM Physics Searches (CoSSURF-2022)

MICROBOONE-NOTE-1076-PUB

MeV-Scale Physics

- Low energy ionization, with energy ~< 100 MeV, produced by low energy gammas or neutrons.
- ✤ We are pushing down the thresholds for reconstructing this information.

Daisy Kalra (Columbia University)

MeV-Scale Physics

- Reconstruction of MeV scale energy depositions can benefit a wide selection of BSM searches such as millicharged particles, identification of pion-muon in final state.
- Crucial for reconstructing low energy electrons from Supernova and solar neutrino interactions. (Snowmass white paper Low Energy Physics in Neutrino LArTPCs <u>arxiv:2203:00740</u>)
- Reconstruction of low energy ionization or blips was previously demonstrated in ArgoNeuT experiment (<u>Phys.Rev.D 99, 012002 (2019</u>)).

Other BSM searches

- Millicharged particles (previous search using <u>ArgoNEUT experiment</u>)
- Dark Tridents : exploring BSM models with e^+e^- final states.

JHEP 01(2019) 001

Daisy Kalra (Columbia University)

BSM Physics Searches (CoSSURF-2022)

Summary

- MicroBooNE has demonstrated LArTPC capability to perform world leading BSM physics searches.
- Many exciting results: Heavy Neutral Leptons Higgs Portal Scalars
- Aiming for publication based on Neutron-Antineutron Oscillation, this summer.
- Stay tuned!

Search for a Higgs Portal Scalar Decaying to Electron-Positron Pairs in the MicroBooNE Detector

P. Abratenko, ³⁵ R. An, ¹⁵ J. Anthony,⁴ J. Asaadi,³⁴ A. Ashkenazi,^{20,32} S. Balasubramaian,¹² B. Baller,¹²
 C. Barnes,²¹ G. Barr,²⁵ V. Bague,¹⁹ L. Bathe-Peters,¹⁴ O. Benevides Rodrigues,³¹ S. Berkman,¹² A. Bhadrei,¹⁹
 A. Bhat,³¹ M. Bishai,² A. Blake,¹⁷ T. Bolton,¹⁶ J. Y. Book,¹⁴ L. Camiller,¹⁰ D. Caratelli,¹² I. Caro Terrazas,⁹
 R. Castillo Fernandez,¹² F. Cavanna,¹² G. Cerati,¹² Y. Chen,¹ D. Cianci,¹⁰ J. M. Conrad,²⁰ M. Convery,²⁸
 L. Cooper-Troende,³³ J. I. Crespo-Anadón,⁶ M. Del Tutto,¹² S. R. Dennis,⁴ D. Devitt,¹⁷ R. Diurba,²² R. Dorrill,¹⁵
 K. Duffy,¹² S. Dytman,²⁶ B. Eberly,³⁰ A. Ereditarol, ¹ J. J. Exons,¹⁹ R. Fine,¹⁸ G. A. Fiorentini Aguire,²⁹
 R. S. Fitzpatrick,²¹ B. T. Fleming,³⁸ N. Foppiani,¹⁴ D. Franco,³⁸ A. P. Furmanski,²² D. Garcia-Gamez,¹³
 S. Gardiner,¹² G. Ge,¹⁰ S. Goldapinni,^{33, 18} O. Goodwin,¹⁹ E. Gramellini,¹² P. Green,¹⁹ H. Greenele,¹² W. Gu,²
 R. Guenette,¹⁴ P. Guvaweki ¹⁹ J. Hawaman³⁸ E. Hell²⁰ O. Hen ²⁰ C. 4. Horton.⁵⁰ H. Greenele,¹⁰ H. Greenele,¹² W. Gu,²
 K. James,¹⁴ X. ¹
 Search for heavy neutral leptons decaving into muon-pion

W. Ketchun B. R. Little D. A. Martinez

J. Mills, 35

L. Mora Lepi

M. Nunes.³¹

M. Rosen

S. Sword

E. Yande

⁶Centro (

M. Touds.

H. Wei.² Z.

M. H. Shaevit S. Söldner-F

Z. Pavlovic,¹² E M. Reggia

202]

Sep

29

[hep-ex]

arXiv:2106.00568v2

P. Abratenko,³⁵ M. Alrashed,¹⁵ R. An,¹⁴ J. Anthony,⁴ J. Asaadi,³⁴ A. Ashkenazi,¹⁹ S. Balasubramanian,³⁸ B. Baller,¹¹ C. Barnes,³⁰ G. Barr³⁴ V. Basque,¹⁸ S. Berkman,¹¹ A. Bhanderi,¹⁸ A. Bhat,³¹ M. Bishai,² A. Blake,⁶ T. Bolton,¹⁵ L. Camilleri,¹⁹ D. Caratelli,¹¹ I. Caro Terrazas,⁸ R. Casillo Fermandez,¹¹ F. Cavana,¹¹ G. Cerati,¹¹ Y. Chen, ¹⁵ E. Church,²⁵ D. Cianci,⁹ E. O. Cohen,³² J. M. Conrad,¹⁹ M. Convery,²⁹ L. Cooper-Troendle,³⁸ J. I. Crespo-Anadón,⁹ M. Del Tutto,^{13,11} D. Devitt,⁶ L. Domine,²⁷ K. Duffy,¹¹ S. Dytman,²⁶ B. Eberly,¹⁰ A. Ereditato,¹ L. Bcauchez,³¹ J. J. Evans,¹¹ R. S. Fitzpatrick,²⁸ B. T. Fleming,³⁰ N. Popiani,¹⁰ D. Franco,³⁸ A. P. Termanski,^{10,33} D. Garcia-Gamez,¹² S. Gardiner,¹¹ V. Genty,¹¹ D. Goldi,¹¹ S. Gollapimi,^{31,17} O. Goodwin,¹⁸ E. Gramellini,¹¹ P. Green,¹⁸ H. Greenelet,¹¹ L. Cus,³⁰ W. Gu² R. Guenette,¹³ J. Guzvisa,¹¹ P. L. Hur,¹⁰ G. C. Hull,¹⁶ G. A. Horton-Smith,¹¹ A. Houriter,¹⁹ E. C. Huang,¹⁷ R. Itay,³⁰ C. James,¹¹ J. Jan e Vries,⁴ X. Ji,² L. Jiang,^{25,30} J. H. Jo,³⁸ R. A. Johnson,⁷ J. Joshi,² Y.J. Jwa,⁹ G. Karagiorgi,¹² S. Jang,¹² G. James,¹¹ J. Jan e Vries,⁴ X. Ji,² L. Jiang,^{25,30} J. H. Jo,³⁸ R. A. Johnson,⁷ J. Joshi,² Y.J. Jwa,⁹ G. Karagiorgi,¹² S. James,¹¹ S. Jan e Vries,¹² X. Jiang,^{25,30} J. H. Jo,³⁸ R. A. Johnson,⁷ J. Joshi,² Y.J. Jwa,⁹ G. Karagiorgi,¹³ S. Staraki,¹⁴ J. Jan e Vries,¹⁴ X. Jiang,^{25,30} J. H. Jo,³⁸ R. A. Johnson,⁷ J. Joshi,¹⁴ Y.J. Jwa,⁹ G. Karagiorgi,¹⁴ S. S. Karagiorgi,¹⁴ S. Jang,¹⁵ G. Jang,¹⁵ G. Karagiorgi,¹⁵ G. Karagiorgi,¹⁵

pairs in the MicroBooNE detector

(The MicroBooNE Collaboration)*

¹Universität Bern, Bern, CH-3012, Switzerland
²Brookhaven National Laboratory (BNL), Upton, New York 11973, USA
⁴University of California, Santa Barbara, California 93106, USA
⁶University of Chinoria, Santa Barbara, California 93106, USA
⁶University of Chicago, Chicago, Ilinois 60637, USA
⁶University of Chicago, Chicago, Ilinois 60637, USA
⁶Colorado State University, Ford Colling, Colorado 80523, USA
⁶Colorado State University, New York, New York 10027, USA
⁶Colorado College, Davidson, North Carolina 28055, USA
¹⁰Davidson College, Davidson, North Carolina 28055, USA
¹¹Fermi National Accelerator Laboratory (FNAL), Batavia, Illinois 60510, USA
¹²Inversity at Connada, E-150071 Granada, Spain

"Yesterday was the watershed moment where neutrino analyses reached the same sophistication as LHC analyses; this, made possible by the LArTPC technology ..."

Thank you!

Daisy Kalra (Columbia University)

17 cm

Joseph Lykken, Fermilab Deputy Director Oct. 2, 2021

Run: 9524 Subrun: 127 Event: 6375

BSM Physics Searches (CoSSURF-2022)