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Neutrinoless Double-Beta Decay
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Adapted from Y. KERMAIDIC, Neutrino2020

Diagram for Light 
neutrino exchange  
J. Engel and J. Menéndez, Rep. Prog. Phys. 80 
(2017) 046301 

Double-beta decay is possible when energetically favored  

Neutrinoless double-beta decay (0νββ) searches 
➢ test total lepton number conservation  
 -- 0νββ violates total lepton number by 2 units ( ) 
➢ probe the Majorana or Dirac nature of massive neutrinos  
 -- observation of 0νββ would imply neutrinos are Majorana fermions 
➢ if observed, shed light on the absolute scale of neutrino mass 

∆ 𝐿 = 2

Effective Neutrino MassNuclear Matrix Element



MAJORANA DEMONSTRATOR
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Searching for neutrinoless double-beta decay of 76Ge in HPGe detectors and 
additional physics beyond the standard model

Operating underground at the 4850’ level of the Sanford Underground Research Facility since 2015

Excellent Energy resolution: 2.5 keV FWHM @ 2039 keV

Source & Detector: Array of p-type, point contact detectors 
30 kg of 88% enriched 76Ge crystals   

Included 6.7 kg of inverted coaxial, point contact detectors in final run

Low Background: 2 modules within a compact graded shield and 
active muon veto using ultra-clean materials



MAJORANA DEMONSTRATOR
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Neutron shielding 
Pure N2 enclosure

• 44.1-kg of Ge detectors 
• 29.7 kg of 87% enriched 

76Ge crystals 
• 14.4 kg of natGe



MAJORANA Run Configuration & Timeline
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Jun. 2015 - Module 1: 
16.8 kg (20) enrGe

  5.6 kg (9) natGe

Aug. 2016 - Module 2: 
12.9 kg (15) enrGe

                 8.8 kg (14) natGe
May 2021 - Module 2:

14.3 kg (23) natGe
                

Sept. 2020 - Module 2 Upgrade: 
14.1 kg (13) enrGe

                 8.8 kg (14) natGe

6.7 kg (4) as ICPC 
Deploy Module 2 in shield

Deploy Module 1 in shield

Cable/Connector Upgrade of Module 2 
Removed 5 PPC detectors for LEGEND Testing 
Installed 4 LEGEND ICPC Detectors

Mar. 2021: 
Stopped enrGe Operation 
Removed all enrGe for 
LEGEND-200

Continuing operation with 
natural Ge detectorsMirion/Canberra 

BEGe 
natGe

Ortec ICPC 
enrGe

Ortec  
PPC 
enrGe



2020 Module 2 Upgrade
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Installed new cables & connectors to improve overall 
robustness 

Improved cable bundling and increased cross-arm shielding 

Removed 5 p-type point contact (PPC) enrGe detectors  
Early LEGEND-200 tests in LAr at LNGS 

Operated with 4 ORTEC inverted-coaxial point-contact (ICPC) 
enrGe detectors  

Low background vacuum testing in advance of 
LEGEND-200

Before Upgrade After Upgrade
Working signal conn. 24/29 (82%) 27/27 (100%)

Reliable HV conn. 19/24 (79%) 27/27 (100%)
Operational 18/29 (62%)*

*Used for final analysis
27/27 (100%)**

**Final selection not 
yet made



MAJORANA DEMONSTRATOR 2019 0νββ Result
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Initial Release: 
9.95 kg-yr open data 

Latest Release:  
First unblinding of data 
26 kg-yr exposure 

Median T1/2 Sensitivity: 
4.8 × 1025 yr  

Full Exposure Limit: 
T1/2 > 2.7 × 1025 yr (90% CL) 

Background Index at 2039 keV in 
lowest background config: 

11.9 ± 2.0 cts/(FWHM t yr)

Operating in a low background regime and benefiting from excellent energy resolution

A new result, with a combined total of ~65 kg-yr from the complete 
data set and analysis improvements, is being prepared for release



Background Modeling
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Reviewing new assay information, as-built geometry and simulations, detector 
configurations, and updated physics lists 

Projected Background Index increased from 2.2 to 2.9 cts/FWHM-t-y but 
continues to under-predict observed background 11.9 cts/(FWHM t yr) 

New techniques have been used to quantify uncertainties in our assay-based 
background model 

New high statistic simulations allow for modeling of regions with low efficiency 

Improved Frequentist and Bayesian fitting efforts underway in order to more 
precisely locate source of excess Th background  

Components grouped by location (e.g. “far vs. near”) and separated by 
module



Double-Beta Decay to Excited States
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Αn inherently multi-site signal topology: 
A “source” detector will have a broad energy spectrum 
from ββ 
The “gamma” detector will measure energy peaked at 
the γ energies 
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The most stringent limits to date for ββ to each excited state 
of 76Se due to: 

Operating an array in vacuum: high detection efficiency 
Exquisite energy resolution for identifying peaks 
Low environmental backgrounds & analysis cuts

41.9 kg y of isotopic exposure 
(20.6 kg y of which was blinded)
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Beyond the Standard Model Searches
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The low backgrounds, low threshold, high resolution spectra allows additional searches

The 90% UL for two tri-nucleon decay-specific modes

First Limit on the direct detection of Lightly Ionizing 
Particles for Electric Charge as Low as e/1000

The 90% UL on the Lightly Ionizing Particle flux with 1σ uncertainty bands

Search for Tri-Nucleon Decay: 
A test of baryon number violation

PRL 120 211804 (2018) PRD 99 072004 (2019)



Beyond the Standard Model Searches
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The low backgrounds, low threshold, high resolution spectra allows additional physics searches 
Controlled surface exposure of enriched material to minimize cosmogenics

Permits low-energy physics 
•pseudoscalar dark matter, vector dark matter, 14.4-
keV solar axion, e- → 3ν, Pauli Exclusion Principle

Updated 90% UL on the pseudoscalar 
axionlike particle dark mater coupling

PRL 118 161801 (2017)

J. Phys. Conf. Ser. 1468, 012040 (2020)

55Fe

68Ge

3H

65Zn

210Pb

Best FitPRELIMINARY 

Low energy spectra from 11.2 kg-yr of low-
background open physics running (DS1-6a)

Excellent energy resolution: ~0.4 keV FWHM at 10.4 keV 
Progress towards a low-E background model 
Applying a dynamic threshold calculation to lower the 
analysis threshold to 1 keV



2021 Operations
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enrGe detector operation completed in March. 2021 
Ultimate integrated exposure: ~65 kg y (enrGe)  
Removed all enrGe detectors and packaged for shipment 
enrGe detectors shipped to LNGS for installation in LEGEND-200 

Detector  
transport 
vessel

Module 2 Natural 
Ge Detectors

Continuing operation with natural detectors 
All remaining natural Ge detectors consolidated into Module 2 
23 BEGe detectors filling 5 of the 7 string positions 
Background studies to refine background model 
Additional physics studies planned



Copper Electroformoing
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• Cu electroforming continues at the Davis campus:
• Th decay chain ≤ 0.1 µBq/kg 
• U  decay chain ≤ 0.1 µBq/kg 

• Machining and cleaning in  underground clean room 
• Assembly and parts storage in N2  purged 

environment 
• Ultra-pure parts being produced for MJD activities 

and also in support of LEGEND 



Searching for Ta-180 Decay in MJD

• 2 ppm (0.0002%) tantalum in earth’s crust 

• Ta-180 is only 0.012% abundant in natural Ta 

• All of the Ta-180 is metastable 

• The only known metastable nuclear decay that has not 
been observed (T1/2 > 1017 years) 

• Using MJD’s unique features 
• Array of detectors 
• Ultra-clean, low background environment for rare 

event search 
• Excellent energy resolution to clearly identify the 

decay signature 

• Installation of 12-15 kg of Ta for one year 

• Search for decay signatures at specific energies that 
have their origin in the Ta-180 decay
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Rare Tantalum bars

Tantalum decay scheme Simulation of Ta disks 
(white) in MJD

MJD’s natural Ge module in  
Spring 2021



MAJORANA DEMONSTRATOR Summary and Outlook
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This material is supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, the Particle Astrophysics 

and Nuclear Physics Programs of the National Science Foundation, and the Sanford Underground Research Facility.

Started taking enrGe data with first module in 2015 and operated both modules from 2016 — 2021 
Latest limit from 26 kg-yr exposure: >2.7 x 1025 yr (90% C.L.); sensitivity 4.8 x 1025 yr (90% C.L.) 
Excellent energy resolution of 2.5 keV FWHM @ 2039 keV, best of all 0νββ experiments  

Background model being investigated and refined 
Initial background fits are informing possible distribution of background sources 
Goal of a full background model consistent with the data - inform design of next generation experiments 

Optimization of analysis cuts is being finalized to improve background rejection  
New results to be released from the complete enriched Ge data set 

Low background + low threshold + energy resolution allows for broad physics program  

Completed an upgrade to cables and connectors, including deployment of new ICPC detectors, as part of LEGEND 
R&D.  Copper electroforming continues in support of MJD and LEGEND. 

Reached an estimated ultimate exposure of ~65 kg-yr with a half-life sensitivity in the range of 1026 yr with the removal 
of enriched detectors for redeployment in LEGEND-200 

Continuing operation with natural detectors for background studies, R&D, and other physics 
Plan to deploy 12-15 kg of Ta to search for metastable decay of Ta-180 with LANL LDRD funding

PRL 118 161801 (2017) PRL 120 211804 (2018) PRD 99 072004 (2019)

PRC 100 025501 (2019)
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