Double Beta Decay

Steve Elliott

Los Alamos National Laboratory

My Experience

- Double Beta Decay
 - LEGEND co-spokesperson (2017-present)
 - MAJORANA spokesperson (2009-2017)
 - UCI-TPC
- Solar Neutrinos
 - SNO NCD construction manager
 - SAGE analyst
- Atomic Physics
 - QED studies in trapped, highly charged ions

Big Science Questions

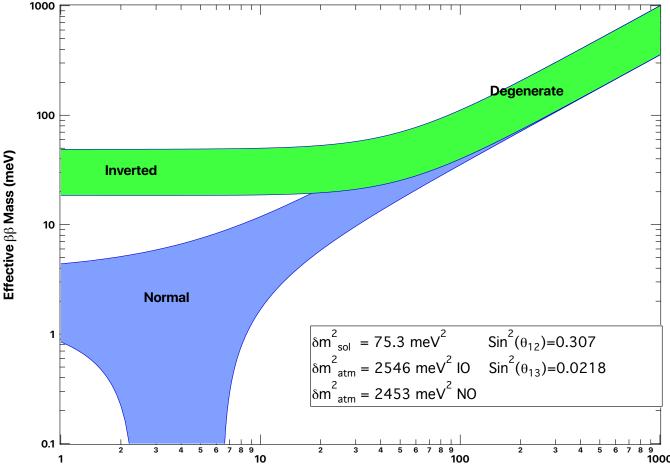
- What is the origin of the Matter, Anti-Matter Asymmetry?
- Is Lepton number conserved?
- Is the Neutrino is own anti-particle?
- What is the neutrino mass?

• A strong double-beta-decay program will help understand the answers.

$$\Gamma_{0v} = G_{0v} |M_{0v}|^2 m_v^2$$

Upcoming Experiments

- Present experiments are reaching below an effective mass of 100 meV
- Next generation experiments are being reviewed. nEXO, LEGEND-1000, CUPID
- This generation of experiments will 'cover' the inverted ordering region between about 15 and 50 meV. Should begin to see results near end of decade (assuming a sufficient funding profile).
- Half-life sensitivity of 10²⁸ years or longer



Future Steps: if no signal seen.

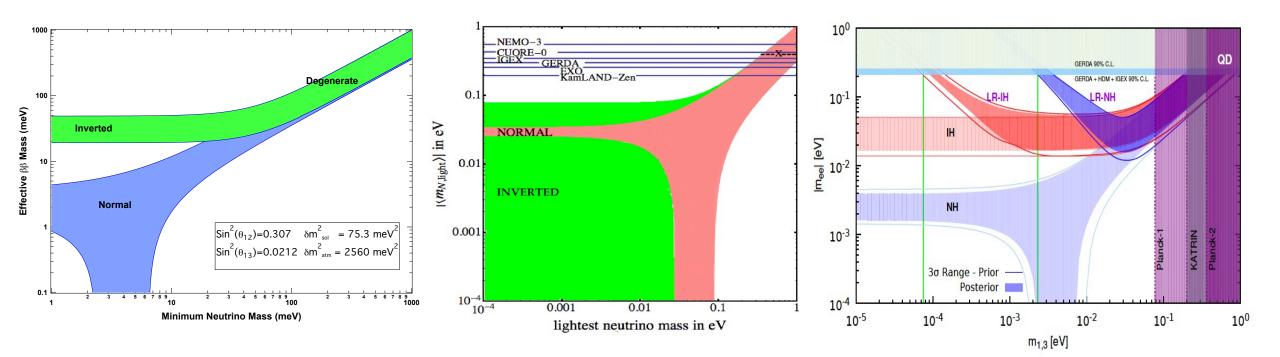
(If seen, will want to observe in several isotopes.)

$$\Gamma_{0v} = G_{0v} |M_{0v}|^2 m_v^2$$

- Natural next goal: Normal Ordering
 - Effective mass goal of 1-5 meV
- This goal is a factor of 10 improvement in effective mass
- Requires factor of 100 improvement in half life sensitivity, 10³⁰ years or longer

Fully understanding the underlying physics requires results in several isotopes In a wonderful world where we see double beta decay

If $\Gamma^{0\nu}$ is non-zero, ν 's are massive Majorana particles, but...


$$\Gamma_{0\nu} = G_{0\nu} \left| M_{0\nu} \eta \right|^2 \quad \text{or} \quad G_{0\nu} \left| M_{0\nu} \right|^2 m_{\beta\beta}^2$$

- There are many physics models that lead to Lepton Number Violation (η), |M| can change with the model
 - Light neutrino exchange
 - Heavy neutrino exchange
 - R-parity violating supersymmetry
 - RHC
 - etc.

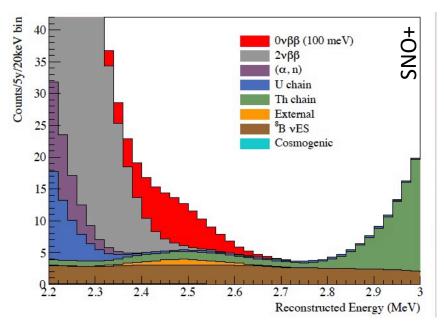
Deppish/Pas Phys. Rev. Lett. 98, 232501 (2007) Gehman/Elliott J. Phys. G 34, 667 (2007) [Erratum G35, 029701 (2008) Fogli/Lisi/Rotunno Phys. Rev. D 80, 015024 (2009)

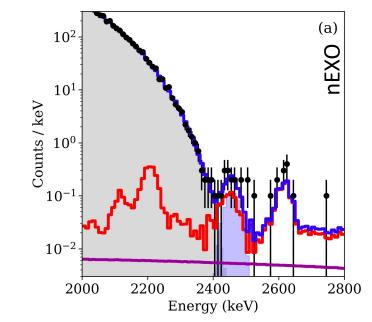
ββ Addresses Key Physics Regardless of Mass Ordering

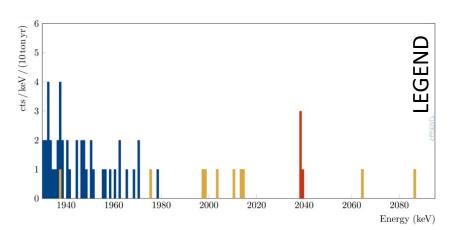
3 neutrino paradigm

Light sterile neutrino contribution An example: PRD92, 093001 (2015) Many papers on this topic. Left-Right symm., Type II contributions From J. HEP 10, 077 (2015) Also many papers on this topic.

If $\beta\beta$ is seen, the qualitative conclusions are profound, but observations in several nuclei will be required to fully understand the underlying physics.


Elliott, LANL P/T Colloquium


Two-key experimental features, often in tension: Large Mass and Good Energy Resolution


These examples are not an apples-to-apples sensitivity comparison.

Doped Scintillator Example: SNO+, Kamland-Zen

Monolithic Detector Example: nEXO, NEXT Crystal Array Example: LEGEND, CUPID

Large Mass or Good Energy Resolution

Doped Scintillator	<u>Monolithic Detector</u>	Crystal Array
Strength: potential for large mass	Strength: significant mass	Strength: very low background very good resolution
Concern: poor resolution inactive material mass	Concern: volume edge effects modest resolution	Concern: modest mass lots of individual crystals surface effects

Very Restrictive Background Requirements

- At 10²⁸ year half life. Count rates are about 1 count/ton yr
 - Need ~10 t-yr exposure
- Requires a background expectation <1 count/(10 t yr) to be a 'nearly background free' measurement – half-life limit scales linearly with exposure
- Sensitivity at 10³⁰ years will require a commensurate x100 decrease in background
- New or emerging backgrounds will be significant
 - Solar neutrinos (charge current and elastic scattering)
 - Muon induced neutron effects (in situ isotope production)
 - Something not yet recognized?
 - And controlling U/Th at these levels will be challenging

Possible Configurations for 100 tons

- 3 kt of scintillator (~3% loading of isotope)
- 100 t monolithic detector
- 20,000 crystal detectors (5 kg each)

All seem plausible, but perhaps expensive due to isotope quantity

Other emerging technologies might play a role in reducing background or elucidating the underlying physics.

quantum dots, daughter identification, electron tracking

Requirements

- ~100 tons or more of isotope, with extensive shielding
 - Sizable underground room, but modest compared to some existing cavities
 - Maybe scale goal by half life instead of effective mass (x10 -> ~10 tons isotope)
- Isotope cost will be an issue. Need R&D on enrichment technologies to address cost and production rate.
 - High natural abundance of ¹³⁰Te might be a driver
 - The quantities of natural isotope required is a concern in some cases
- Background ~10⁻⁷ counts/keV kg yr
 - Deep, clean laboratory space
 - High throughput assay capacity
- Potential synergies with other low-background programs (dark matter, e.g.)