Neutrino Physics

Josh Klein, University of Pennsylvania

Work on:


- Neutrinoless double beta decay, solar and reactor vs with SNO+
- Long-baseline v oscillations with DUNE
- v interactions and "sterile" v searches with SBND
- Plans for future detectors (e.g., Theia)
- Related R&D

Big Questions

- 1. Are neutrinos Majorana Particles?
- 2. What is the neutrino mass ordering?
- 3. Do neutrinos violate (Dirac) CP?
- 4. Are standard 3-flavor oscillations the whole story?
- 5. What can we learn about astrophysical objects and events with vs?

Majorana Neutrinos

If neutrinos are not Majorana, we have four neutrino states:

But what's the <u>physical</u> difference between $\overline{\nu}_{R}$ and $\overline{\nu}_{R}$?

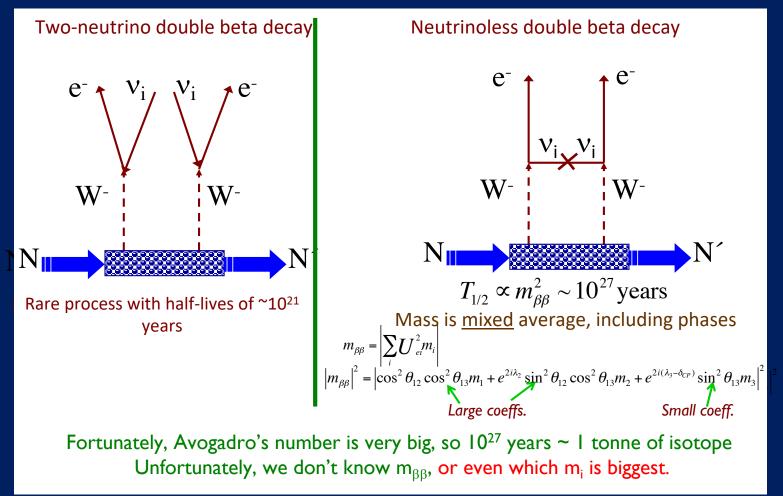
They have: Same charge (0) Same mass Same chirality

They differ only in their "anti"-ness...but "anti"-ness is not a thing!

Majorana Neutrinos

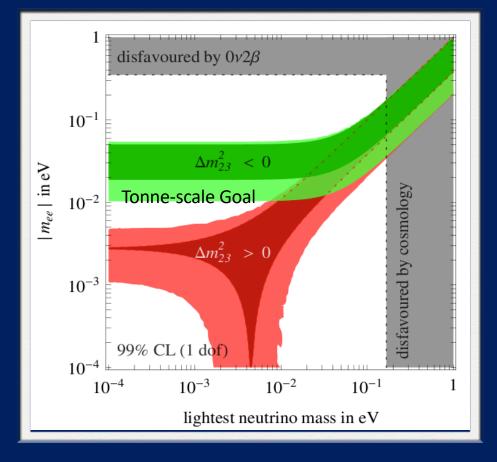
If neutrinos are Majorana, then:

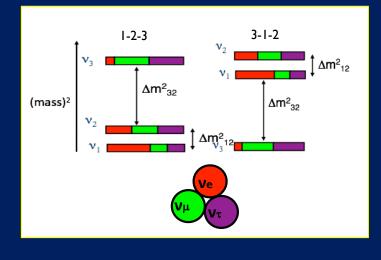
- I. We need a new mass-generating mechanism
- 2. We likely have observed low-energy consequences of very high E scale physics
- 3. We may have an explanation for the matter/antimatter asymmetry
 - "Leptogenesis"
 - Requires Majorana CP phases


$$U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos\theta_{23} & \sin\theta_{23} \\ 0 & -\sin\theta_{23} & \cos\theta_{23} \end{pmatrix} \times \begin{pmatrix} \cos\theta_{13} & 0 & e^{-i\delta_{CP}}\sin\theta_{13} \\ 0 & 1 & 0 \\ -e^{i\delta_{CP}}\sin\theta_{13} & 0 & \cos\theta_{13} \end{pmatrix} \times \begin{pmatrix} \cos\theta_{12} & \sin\theta_{12} & 0 \\ -\sin\theta_{12} & \cos\theta_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \times \begin{pmatrix} 1 & 0 & 0 \\ 0 & e^{i\alpha/2} & 0 \\ 0 & 0 & e^{i\alpha/2} \end{pmatrix}_{i\beta}$$

If neutrinos are Dirac, then:

- 1. Matter and antimatter are <u>fundamentally</u> different things
- 2. We have states that don't really do much


Majorana Neutrinos


Most practical way of deciding this...

Majorana Neutrinos and the Neutrino Mass Ordering

Interpretation of a null result depends on mass ordering of neutrinos

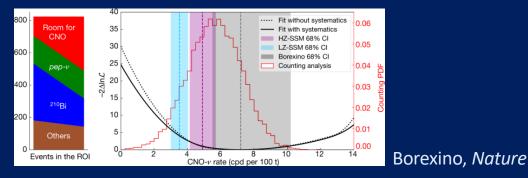
Neutrino Mass Ordering and Dirac CP Violation

Long Baseline Neutrino Oscillations

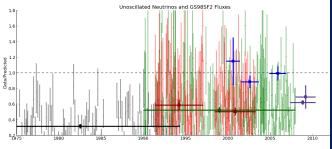
Extremely rich phenomenology:

 $P(\nu_{\mu} \to \nu_{e}) = 4C_{13}^{2}S_{13}^{2}S_{23}^{2} \cdot \sin^{2}\Delta_{31}$

$$\begin{split} +8C_{13}^2S_{12}S_{13}S_{23}(C_{12}C_{23}\cos\delta-S_{12}S_{13}S_{23})\cdot\cos\Delta_{32}\cdot\sin\Delta_{31}\cdot\sin\Delta_{21}\\ -8C_{13}^2C_{12}C_{23}S_{12}S_{13}S_{23}\sin\delta\cdot\sin\Delta_{32}\cdot\sin\Delta_{31}\cdot\sin\Delta_{21}\\ +4S_{12}^2C_{13}^2(C_{12}^2C_{23}^2+S_{12}^2S_{23}^2S_{13}^2-2C_{12}C_{23}S_{12}S_{23}S_{13}\cos\delta)\cdot\sin^2\Delta_{21}\\ -8C_{13}^2S_{13}^2S_{23}^2\cdot\frac{aL}{4E_{\nu}}(1-2S_{13}^2)\cdot\cos\Delta_{32}\cdot\sin\Delta_{31}\\ +8C_{13}^2S_{13}^2S_{22}^2\frac{a}{\Delta m_{31}^2}(1-2S_{13}^2)\cdot\sin^2\Delta_{31},\\ \mathrm{Sign \ of\ neutrino\ ordering\ from\ matter\ effects} \end{split}$$


"All the neutrinos, all the time"

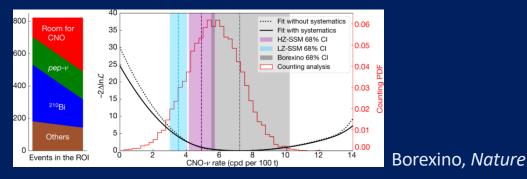
$$= 2\sqrt{2}G_F n_e E$$


$$\mathcal{A}_{cp}(E_{\nu}) \approx \frac{\cos\theta_{23}\sin2\theta_{12}\sin\delta}{\sin\theta_{23}\sin\theta_{13}} \left(\frac{\Delta m_{21}^2 L}{4E_{\nu}}\right) + \text{matter effects.}$$

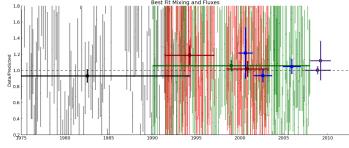
Neutrinos as Astrophysical Messengers

• Is the Sun as metal poor as it looks? If so, where did metals go...?

• Are the Sun's core fusion processes stable with time?

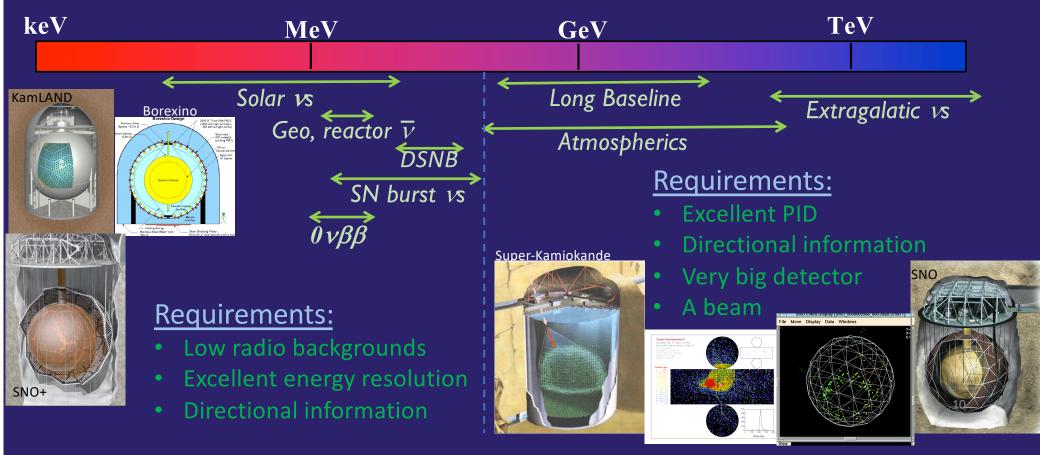


A. LaTorre


- Does the Sun's neutrino luminosity agree with its total energy output?
- What will the next galactic supernova tell us about neutrinos, and supernovae?
- What do all the past supernovae tell us about stars?

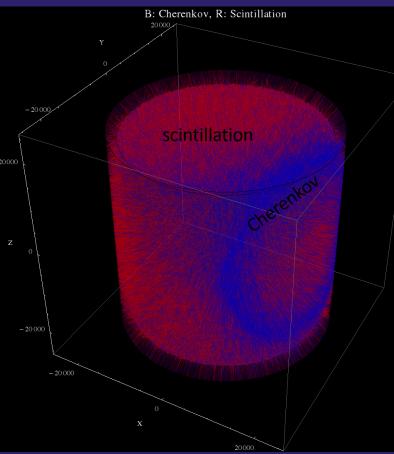
Neutrinos as Astrophysical Messengers

• Is the Sun as metal poor as it looks? If so, where did metals go...?


Are the Sun's core fusion processes stable with time?

- A. LaTorre
- Does the Sun's neutrino luminosity agree with its total energy output?
- What will the next galactic supernova tell us about neutrinos, and supernovae?
- What do all the past supernovae tell us about stars?

A Broad Program...

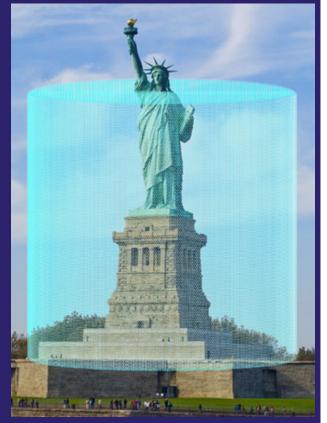

With very different requirements...

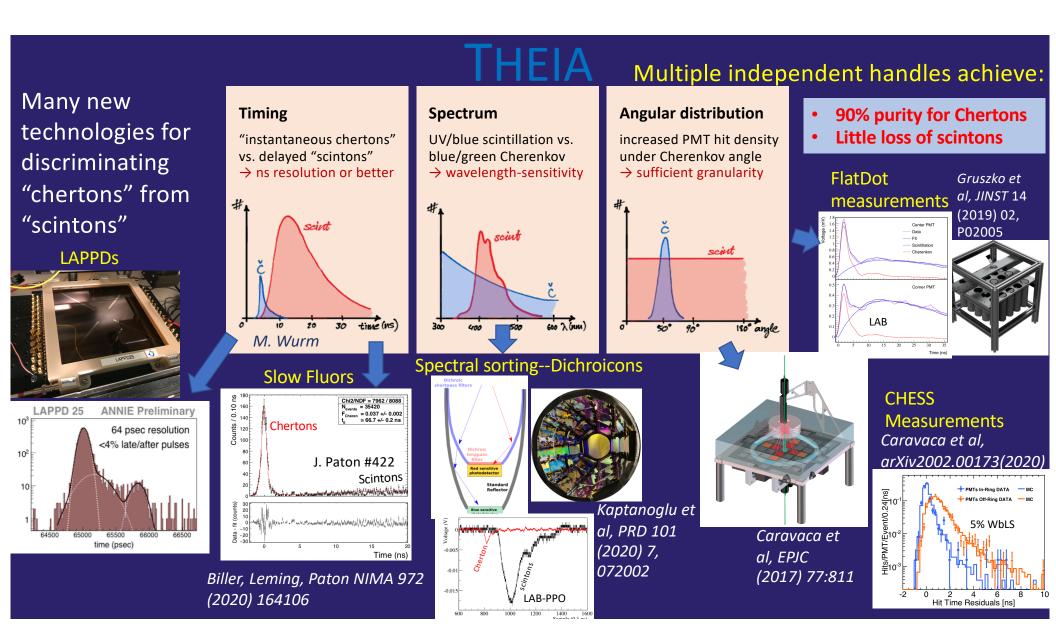
Josh Klein, University of Pennsylvania

THEIA

Hybrid Cherenkov/Scintillation

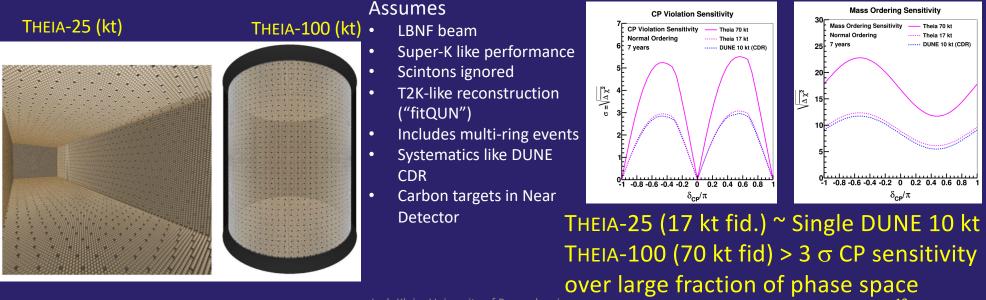
Cherlight:


- Solar/SN direction
- Particle ID at high and low energies
- Measurement of velocity and path length


Scintlight:

- Energy resolution
- Particle ID at low energies
- Measurement of dE/dx

Josh Klein, University of Pennsylvania


Eur. Phys. J. C (2020) 80:416 https://doi.org/10.1140/epjc/s10052-020-7977-8 THE EUROPEAN PHYSICAL JOURNAL C

Regular Article - Experimental Physics

THEIA: an advanced optical neutrino detector

M. Askins^{1,2}, Z. Bagdasarian³, N. Barros^{4,5,6}, E. W. Beier⁴, E. Blucher⁷, R. Bonventre², E. Bourret², E. J. Callaghan^{1,2}, J. Caravaca^{1,2}, M. Diwan⁸, S. T. Dye⁹, J. Eisch¹⁰, A. Elagin⁷, T. Enqvist¹¹, V. Fischer¹², K. Frankiewicz¹³, C. Grant¹³, D. Guffanti¹⁴, C. Hagner¹⁵, A. Hallin¹⁶, C. M. Jackson¹⁷, R. Jiang⁷, T. Kaptanoghu⁴, J. R. Klein⁴, Yu. G. Kolomensky^{1,2}, C. Kraus¹⁸, F. Krennrich¹⁰, T. Kutter¹⁹, T. Lachenmaier²⁰, B. Land^{1,2,4}, K. Lande⁴, J. G. Learned⁹, V. Lozza^{5,6}, L. Ludhova⁵, M. Malek²¹, S. Maneckl^{18,22,23}, J. Maneira^{5,6}, J. Marcic⁹, J. Martyn¹⁴, A. Mastbaum²⁴, C. Mauger⁴, F. Moretti², J. Napolitano⁵⁵, B. Naranjo²⁶, M. Nieslony¹⁴, L. Oberauer²⁷, G. D. Orebi Gann^{1,2,a}, J. Ouellet²⁸, T. Pershing¹², S. T. Petcov^{29,30}, L. Pickard¹², R. Rosero⁸, M. C. Sanchez¹⁰, J. Sawatzkl²⁷, S. H. Seo³¹, M. Smiley^{1,2}, M. Smy³², A. Stahl³³, H. Steiger²⁷, M. R. Stock²⁷, H. Sunej⁸, R. Svoboda¹², E. Tiras¹⁰, W. H. Trzaska¹¹, M. Tzanov¹⁹, M. Vagins³², C. Vilela³⁴, Z. Wang⁵⁵, J. Wang¹², M. Wetstein¹⁰, M. J. Wilking³⁴, L. Wittich³⁶, B. Wonsak¹⁵, E. Worcester^{8,54}, M. Wurm¹⁴, G. Yang³⁴, M. Yeh⁸, E. D. Zimmerman³⁷, S. Zsoldos^{1,2}, K. Zuber³⁸

Examined two detectors @ LBNF:

Phased program to increase light yield, Cher/Scint separation

THEIA Long-baseline oscillations

v. Spectrum: 1 ring, 0 decay

Normal Ordering

70-kt (fiducial) WCD

200

140

N 160 3.5 years v

N 200 W 180 v Spectrum: 1 ring, 0 decay

Signal + Bg, $\delta_{CP} = 0^{\circ}$

Signal + Bg, $\delta_{CP} = 90^{\circ}$

Signal + Bg, Scp = -90

v., + ⊽., CC Bg

 $v_{\mu} + \overline{v}_{\mu} \text{ NC Bg}$

G. Yang #253

Beam ve + ve Bg

Neutrino Energy (GeV)

Normal Ordering

3.5 years v

70-kt (fiducial) WCD

MeV

250

ents

50

Signal + Bg, $\delta_{CP} = 0^{\circ}$

Signal + Bg, $\delta_{CP} = 90^{\circ}$

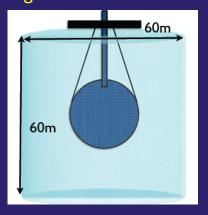
Signal + Bg, 8 cp = -90°

v. CC Bg

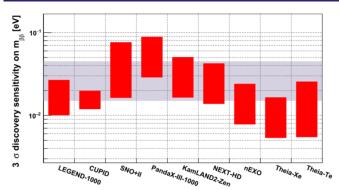
v_u NC Bg

Beam v_e Bg

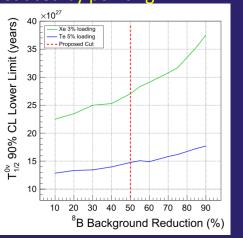
Neutrino Energy (GeV)


v astrophysics ΙΔ **Precision CNO** measurement via pointing Possibility of CC on ⁷Li for ⁸B and SN **DSNB Background rejection** Target-weighted Cross Section Comparison exploiting Cher/Scint Ratio 25 degrees "Clean" geo-neutrino signal 10 10-35 degrees ES MSW CNO normalization fractional uncertainty (%) 45 degrees Li CC Transition 9 \times N targets for 100 kt det (10% Li loaded) (/y/MeV) 55 degrees Deuteron NC 10visible scintillation energy (MeV) Region Deuteron CC Reactors 2500 10 20 30 40 50 60 70 0.1 o 0.9 10 🛑 Geo-nu 10-9 Rate DSNB 2000 7 S 0.8 — Th AtmNC 1500 6 0.7 0.6 5 10^{-11} 1000 0.5 $\sigma(E)$ 0.4 10^{-12} 0.3 2 à à 02 100 10^{1} Antineutrino Energy (MeV) **THEIA-100 THEIA-100** WbLS scintillator fraction (%) 0.1 Neutrino Energy (MeV) Sector and a sector Allows U/Th measurement Sec. 27 0.0 E 2000 4000 6000 8000 10000 scintillation p.e. SN Burst neutrino spectra SN pointing ~ 2 degrees **Pre-SN burst neutrinos** counts per MeV visible energy, scintillation [MeV] 10 kpc SK (22.5kt) (₀) 0⊽ 0 10 20 30 40 full IBD BG imes day) 25 NH be IBD - 20. NH 22.5kt DSNB 15. NH 8 10² 10% BG Reactor BG event rate (per kt 12. NH 22.5kt - AtmCC BG and no BG 10¹ AtmNC BG **NCO** 10² s per 100 kt·yrs a 10E ν°Ο THEIA 100kt 10 no BG events 100kt 10-2 10% BG 100kt, full BG **THEIA-100** 2000 6000 time to core collapse (days) 4000 -3 -2 -1 0 3 40 60 80 100 number of photoelectrons (scintillation) Δφ (°) **THEIA-100** visible energy (MeV) Low reactor/geo background--Burst Trigger latency ~100 ns ~200 events total from LMC 3σ detection 1 day before SN IBD tagging via n capture out to 3.3 kpc Literally complementary to LAr Josh Klein, University of Pennsylvania 14

Beyond the Standard Model


Nucleon Decay

Neutrinoless Double Beta Decay **Requires inner**


containment bag for high LY scintillator

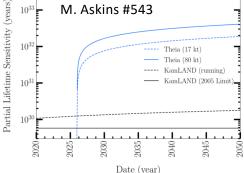
$T_{1/2} > 10^{28}$ y in 10 y for Te loading

Dominant ⁸B v background reduced by pointing

Assumes:

•

•


٠

5% loading of ^{nat}Te

3% energy resolution at endpoint

50% removal of ⁸B v background

$n \rightarrow 3\nu$ M. Askins #543 Theia (17 kt)

 10^{33}

Size and scintillation light provides excellent sensitivity to "invisible modes"

Detection of K⁺ via scintillation light

. INO Super-K Partial Lifetime Sensitivity (years) Theia (80 kt) Theia (17 kt) Hyper-K Theia (17 kt) + Dune (30 kt) 10^{3} 10^{3} 204020452050 2020 2025 2030 2035 Date (year)

What's Needed?

- Depth (>=4850 ft should do fine)
- Beam like the LBNF beam
- A large cavity (17 ktonnes---100 ktonnes, depending on science goals)
- New technology (fluors/scintillators, dichroicons, fast timing, loading)
- Very clean environment
- A forward-looking infrastructure for a phased program