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Work on:
• Neutrinoless double beta decay, solar and reactor ns with SNO+
• Long-baseline n oscillations with DUNE
• n interactions and ”sterile” n searches with SBND
• Plans for future detectors (e.g., Theia)
• Related R&D



Big Questions

1. Are neutrinos Majorana Particles?
2. What is the neutrino mass ordering?
3. Do neutrinos violate (Dirac) CP?
4. Are standard 3-flavor oscillations the whole story?
5. What can we learn about astrophysical objects and events with ns?



Majorana Neutrinos
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If neutrinos are not Majorana, we have four neutrino states:
“Old” “New”

But what’s the physical difference between       and       ? Rν Rν

They have:
Same charge (0)
Same mass
Same chirality

They differ only in their “anti”-ness…but “anti”-ness is not a thing!

How are 
these

 diffe
rent?



If neutrinos are Majorana, then:
1. We need a new mass-generating mechanism
2. We likely have observed low-energy consequences of very high E scale physics
3. We may have an explanation for the matter/antimatter asymmetry

If neutrinos are Dirac, then:
1. Matter and antimatter are fundamentally different things 
2. We have states that don’t really do much
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Majorana Neutrinos

• “Leptogenesis”
• Requires Majorana CP phases
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Two-neutrino double beta decay Neutrinoless double beta decay

Fortunately, Avogadro’s number is very big, so 1027 years ~ 1 tonne of isotope 
Unfortunately, we don’t know mbb, or even which mi is biggest.

Large coeffs. Small coeff.
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Majorana vs. Dirac
Most practical way of deciding this…

Majorana Neutrinos



Majorana Neutrinos and the Neutrino Mass Ordering

Tonne-scale Goal

Interpretation of a null result depends on mass ordering of neutrinos

1-2-3 3-1-2

νe
νµ νt



Neutrino Mass Ordering and Dirac CP Violation

Δij =
Δmij

2L
4Eν

Extremely rich phenomenology:
Long Baseline Neutrino Oscillations

“All the 
neutrinos, all 
the time”

Sign of neutrino ordering from matter effects

CP violating phase



Neutrinos as Astrophysical Messengers

• Is the Sun as metal poor as it looks? If so, where did metals go…?

• Are the Sun’s core fusion processes stable with time?

• Does the Sun’s neutrino luminosity agree with its total energy output?
• What will the next galactic supernova tell us about neutrinos, and supernovae?
• What do all the past supernovae tell us about stars?

Borexino, Nature

A. LaTorre
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A Broad Program…

keV MeV GeV TeV

Solar ns
Geo, reactor n

0nbb

Long Baseline

DSNB
SN burst ns

Atmospherics
Extragalatic ns

Requirements:
• Low radio backgrounds
• Excellent energy resolution
• Directional information

Requirements:
• Excellent PID
• Directional information
• Very big detector
• A beam

KamLAND
Borexino

SNO

SNO+

Super-Kamiokande
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With very different requirements…



THEIA
Hybrid Cherenkov/Scintillation

scintillation

Cherenkov
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Cherlight:
• Solar/SN direction
• Particle ID at high and

low energies
• Measurement of

velocity and path length

Scintlight:
• Energy resolution
• Particle ID at low 

energies
• Measurement of dE/dx



THEIA
Timing
“instantaneous chertons”
vs. delayed “scintons”
→ ns resolution or better

Spectrum
UV/blue scintillation vs. 
blue/green Cherenkov
→ wavelength-sensitivity

Angular distribution
increased PMT hit density
under Cherenkov angle
→ sufficient granularity

Many new 
technologies for 
discriminating 
“chertons” from 
“scintons”

Biller, Leming, Paton NIMA 972 
(2020) 164106
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Kaptanoglu et 
al, PRD 101 
(2020) 7, 
072002

Spectral sorting--DichroiconsSlow Fluors

LAPPDs

CHESS
Measurements

Caravaca et al, 
arXiv2002.00173(2020)

Multiple independent handles achieve:

Chertons

Scintons

• 90% purity for Chertons
• Little loss of scintons

FlatDot
measurements

M. Wurm
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J. Paton #422

Gruszko et 
al, JINST 14 
(2019) 02, 
P02005

Caravaca et 
al, EPJC 
(2017) 77:811

5% WbLS

LAB-PPO

LAB



THEIA

Examined two detectors @ LBNF:
THEIA-25 (kt) THEIA-100 (kt)

Long-baseline oscillations

Assumes 
• LBNF beam
• Super-K like performance
• Scintons ignored
• T2K-like reconstruction 

(“fitQUN”)
• Includes multi-ring events
• Systematics like DUNE 

CDR
• Carbon targets in Near 

Detector THEIA-25 (17 kt fid.) ~ Single DUNE 10 kt
THEIA-100 (70 kt fid) > 3 s CP sensitivity 
over large fraction of phase space

Phased program to increase light yield, Cher/Scint separationJosh Klein, University of Pennsylvania 13

G. Yang #253



THEIAPrecision CNO 
measurement via pointing Possibility of CC on 7Li for 8B and SN

SN Burst neutrino spectra SN pointing ~ 2 degrees

n astrophysics
DSNB Background rejection 
exploiting Cher/Scint Ratio

Pre-SN burst neutrinos

~200 events total from LMC
IBD tagging via n capture
Literally complementary to LAr

10 kpc

Burst Trigger latency ~100 ns Low reactor/geo background--
3 s detection 1 day before SN 
out to 3.3 kpc

“Clean” geo-neutrino signal

Allows U/Th measurement

Josh Klein, University of Pennsylvania 14

MSW 
Transition 
Region

THEIA-100 THEIA-100

THEIA-100
THEIA-100



THEIA
Neutrinoless Double Beta Decay

Beyond the Standard Model

Requires inner 
containment bag for 
high LY scintillator

Dominant 8B n background 
reduced by pointing

T1/2 > 1028 y in 10 y for Te loading
Assumes:
• 5% loading of natTe
• 3% energy resolution at endpoint
• 50% removal of 8B n background

Nucleon Decay

Size and scintillation light 
provides excellent sensitivity 
to “invisible modes”

Detection of K+ via 
scintillation light

Josh Klein, University of Pennsylvania
15

M. Askins #543



What’s Needed?

• Depth (>=4850 ft should do fine)
• Beam like the LBNF beam
• A large cavity (17 ktonnes---100 ktonnes, depending on science goals)
• New technology (fluors/scintillators, dichroicons, fast timing, loading)
• Very clean environment
• A forward-looking infrastructure for a phased program


